• Title/Summary/Keyword: Classification Accuracy Ratio

Search Result 169, Processing Time 0.025 seconds

Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating (유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

Karyotype Classification of Chromosome Using the Hierarchical Neu (계층형 신경회로망을 이용한 염색체 핵형 분류)

  • Chang, Yong-Hoon;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.555-559
    • /
    • 1998
  • The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis have been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, We proposed an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted four morphological features parameters such as centromeric index (C.I.), relative length ratio(R.L.), relative area ratio(R.A.) and chromosome length(C.L.). These Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results shown that the chromosome classification error was reduced much more than that of the other classification methods.

  • PDF

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

A Study on the Application of Interpolation and Terrain Classification for Accuracy Improvement of Digital Elevation Model (수지표고지형의 정확도 향상을 위한 지형의 분류와 보간법의 상용에 관한 연구)

  • 문두열
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.64-79
    • /
    • 1994
  • In this study, terrain classification, which was done by using the quantitative classification parameters and suitable interpolation method was applied to improve the accuracy of digital elevation models, and to increase its practical use of aerial photogrammetry. A terrain area was classified into three groups using the quantitative classification parameters to the ratio of horizontal, inclined area, magnitude of harmonic vectors, deviation of vector, the number of breakline and proposed the suitable interpolation. Also, the accuracy of digital elevation models was improved in case of large grid intervals by applying combined interpolation suitable for each terrain group. As a result of this study, I have an algorithm to perform the classification of the topography in the area of interest objectively and decided optimal data interpolation scheme for given topography.

  • PDF

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Missing Value Imputation based on Locally Linear Reconstruction for Improving Classification Performance (분류 성능 향상을 위한 지역적 선형 재구축 기반 결측치 대치)

  • Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.276-284
    • /
    • 2012
  • Classification algorithms generally assume that the data is complete. However, missing values are common in real data sets due to various reasons. In this paper, we propose to use locally linear reconstruction (LLR) for missing value imputation to improve the classification performance when missing values exist. We first investigate how much missing values degenerate the classification performance with regard to various missing ratios. Then, we compare the proposed missing value imputation (LLR) with three well-known single imputation methods over three different classifiers using eight data sets. The experimental results showed that (1) any imputation methods, although some of them are very simple, helped to improve the classification accuracy; (2) among the imputation methods, the proposed LLR imputation was the most effective over all missing ratios, and (3) when the missing ratio is relatively high, LLR was outstanding and its classification accuracy was as high as the classification accuracy derived from the compete data set.

A Study on the Validity of the Questionnaire about Sasang Constitution Classification for Mongolians (몽고인(蒙古人)을 위한 사상체질분류검사지(四象體質分類檢査紙)의 타당화(妥當化) 연구(硏究))

  • Kim, Kyung-Su;Lee, Su-Kyung;Shin, Hyeun-Kyoo;Koh, Byung-Hee;Song, Il-Byung;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.1
    • /
    • pp.98-115
    • /
    • 2007
  • 1. Objectives This study focuses on the Validity of the Questionnaire about Sasang Constitution Classification for Mongolians 2. Methods By using the way of backward elimination, certain variables are chosen from the 438 cases whose physical conditions are absolutely diagnosed. After that, discriminant analysis for the selected variables has been done to obtain the physical constitution equation and the accuracy ratio of diagnosis which are useful for physical constitution diagnosis. 3. Results and Conclusions (1) In tile Validity for the Questionnaire of Sasang Constitution Classification for Mongolians, the accuracy ratio of diagnosis of Taeyangin is 100%, Soyangin 62.5%, Taeumin 76.7%, and Soeumin 66.1% respectively as a result of the discriminant analysis employing Cronbach's alpha coefficient. On the whole, the accuracy ratio of diagnosis is 70.1%. (2). In the Validity for the Questionnaire of Sasang Constitution Classification for Mongolians, the accuracy ratio of diagnosis of 70.1% means that it beats the maximum chance criterion of 41.4% and the proportional chance criterion of 34.4% by 28.7% and 35.7% respectively. Conclusively, this questionnaire has discriminant power.

  • PDF

The Implementation of Pattern Classifier or Karyotype Classification (핵형 분류를 위한 패턴 분류기 구현)

  • Eom, S.H.;Nam, K.G.;Chang, Y.H.;Lee, K.S.;Chang, H.H.;Kim, G.S.;Jun, G.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.133-136
    • /
    • 1997
  • The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room or improving the accuracy of chromosome classification. In this paper, We propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of multi-step multi-layer neural network(MMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted three morphological features parameters such as centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.). This Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other classification methods.

  • PDF

A Study on the Landcover Classification using Band Ratioing Data of Landsat-TM (Landsat-TM의 밴드비 연산데이터를 이용한 토지피복분류에 관한 연구)

  • Kwon, Bong-Kyum;Yamada, Kiyoshi;Niren, Takaaki;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.80-91
    • /
    • 2003
  • In this research, re-using band ratio data was proposed and examined as a method of raising the accuracy in landcover classification which is using satellite data.In order to determine the band which is used to calculation in the classified item, the six bands except the band 6 were combined with the band in which combination is possible and the landcover classification by MLC of supervised classification was carried out. In the result of landcover classification which is combined with forty nine combination, Two bands which were mostly used by band combination in the accuracy belonged inside the 10th place of a higher rank were selected and also calculated. landcover classification were performed again after the calculation result had been recombinated from the research. In addition, the new landcover classification result was compared and examined with the landcover classification using the old data. From the result of which was compared and examined the new landcover classification data recombinated calculation result with landcover classification using the original data, The classification accuracy of the new landcover classification data recombinated calculation result became low in ground but became improved in the all class. Specially The accuracy to urban area is very improved. therefore, it determined that reusing band ratio data is very useful when we need to analyze landcover classification and land information to urban area after that.

  • PDF

A Study on Extracting a Pine Gall Midge Damaged Area Using Landsat TM Data (LANDSAT TM DATA를 이용한 솔잎혹파리 피해지역추출에 관한 연구)

  • 안철호;윤상호;박병욱;양경락
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.2
    • /
    • pp.42-52
    • /
    • 1988
  • The main object of this study is to prove the effectiveness of Landsat data in detecting the stressed areas in forest by extracting these areas. And also to choose the effective bands for this type of survey and to reduce the effect of shadow in forest to improve the accuracy of classification are the other objects. In this study Landsat-5 TM data is used and image processing techniques such as spatial filtering and ratio are taken to reduce the effect of shadow and to improve the classification accuracy. As a result following conclusions are obtained. First, Landsat TM data is useful to detect the stressed areas in forest. Second, when detecting the stressed area, band 4 and 5 are the most effective. Third, spatial filtering and ratio are useful to reudce the effect of shadow and improve the classification accuracy. Especially, ratio has great effect on improving the classification accuracy between forest and other areas.

  • PDF