• Title/Summary/Keyword: Classification Accuracy Comparison

Search Result 258, Processing Time 0.024 seconds

Development of Construction Model of Disease Classification on Clinical Diagnosis in Ophthalmology (임상진단명에 따른 질병분류체계 구축모형 개발 - 안과를 대상으로 -)

  • Suh, Jin-Sook;Shin, Hee-Young;Kee, Chang-Won
    • Quality Improvement in Health Care
    • /
    • v.10 no.2
    • /
    • pp.204-215
    • /
    • 2003
  • Background : ICD-10 Classification, which is used domestically as well as internationally, has limited use in the clinical practice since it is developed for at disease statistics and epidemiology. Therefore, the purposes of this study were to improve the quality of diagnosis by constructing a new disease classification based on the diagnoses doctors currently make in the clinical setting and connecting this classification with OCS and EMR, and to meet the demands of doctors for high quality medical study data in medical research. Methods : The specialists in each ophthalmic subfield collected clinical diagnoses and abbreviations based on the ophthalmology textbooks and confirmed the classifications. Total number of clinical diagnoses collected was totaled 672, for which ideal diagnoses had been selected and a new model of disease classification model in connection with ICD-10 was constructed. The constructed classification of clinical diagnoses consisted of six steps: the first step was the classification by ophthalmic subspecialty field; the second to fifth steps were the detailed classification by each specialty field; the sixth step was the classification by site. Results : After introducing the new disease classification, research on the use and a pre-post comparison was conducted. The result from the research on the use of the clinical diagnoses in inpatient and outpatient care has shown a gradually increasing tendency. From the pre-post comparison of EMR discharge summary diagnoses, the result demonstrated that the diagnosis was stated correctly and in detail. Since the diagnosis was stated correctly, code classification became correct as well, which makes it possible to construct high quality medical DB. Conclusion : This construction of clinical diagnoses provides the medical team with high quality medical information. It is also expected to increase the accuracy and efficiency of service in the department of medical record and department of insurance investigation. In the future, if hospitals wish to construct a classification of clinical diagnosis and a standard proposal of clinical diagnosis is presented by a medical society, the standardization of diagnosis seems to be possible.

  • PDF

The Land-cover Changes and Pattern Analysis in the Tidal Flats Using Post-classification Comparison Method: The Case of Taean Peninsula Region (선분류 후비교법을 이용한 간석지의 토지피복 변화 및 패턴 분석 - 태안반도 지역을 사례로 -)

  • Jang, Dong-Ho;Kim, Chan-Soo;Park, Ji-Hoon
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.2
    • /
    • pp.275-292
    • /
    • 2010
  • This study investigated the land-cover changes in the tidal flat of the Taean peninsula due to man-made environmental changes between 1972 and 2008, through time-series analysis based on a modified post-classification comparison method and multi-temporal satellite images. The analysis revealed that the land-cover of the tidal flat has changed from tidal flat to wetland and from wetland to paddy field between 1972 and 2008. Also, the pattern of detailed land-cover changes is as follows: tidal flat to wetland; lake and saltpan to bare land and paddy field. The accurate classification of each image is needed for the application of the post-classification comparison method. The overall accuracy of the classified images was found to be 95.33% on average, and the Kappa value was 0.941 on average.

Proposal of Feature Classification System for Land Change Detection (국토변화탐지를 위한 지형분류체계 개선안)

  • Park, Jun-Ku;Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • For the exact status of the land such as land cover classification and land use classification, feature classification system has been utilized in several organizations and agencies. However, those classification systems are limited to detection of land change and it's also not suited for the extraction of land changed. In this study, we would proposed a standard feature classification system which presents both in natural and artificial change of land effectively. Based on comparison and analysis of domestic and foreign relevant feature classification system, we proposed a standard feature classification system. In order to validate the applicability of the proposed feature classification system, we evaluated the accuracy with using automatic feature classification based on supervised classification and pre-knowledge hierarchical classification.

A Rule-Based Image Classification Method for Analysis of Urban Development in the Capital Area (수도권 도시개발 분석을 위한 규칙기반 영상분류)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.43-54
    • /
    • 2011
  • This study proposes a rule-based image classification method for the time-series analysis of changes in the land surface of the Seongnam-Yongin area using satellite-image data from 2000 to 2009. In order to identify the change patterns during each period, 11 classes were employed in accordance with statistical/mathematic rules. A generalized algorithm was used so that the rules could be applied to the unsupervised-classification method that does not establish any training sites. The results showed that the urban area of the object increased by 145% due to housing-site development. The image data from 2009 had a classification accuracy of 98%. For method verification, the results were compared to land-cover changes through Post-classification comparison. The maximum utilization of the available data within multiple images and the optimized classification allowed for an improvement in the classification accuracy. The proposed rule-based image-classification method is expected to be widely employed for the time-series analysis of images to produce a thematic map for urban development and to monitor urban development and environmental change.

Performance Comparison of Base CNN Models in Transfer Learning for Crop Diseases Classification (농작물 질병분류를 위한 전이학습에 사용되는 기초 합성곱신경망 모델간 성능 비교)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.

Mapping of Vegetation Cover using Segment Based Classification of IKONOS Imagery

  • Cho, Hyun-Kook;Lee, Woo-Kyun;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • v.26 no.2
    • /
    • pp.75-81
    • /
    • 2003
  • This study was performed to prove if the high resolution satellite imagery of IKONOS is suitable for preparing digital vegetation map which is becoming increasingly important in ecological science. Seven classes for forest area and five classes for non-forest area were taken for classification. Three methods, such as the pixel based classification, the segment based classification with majority principle, and the segment based classification with maximum likelihood, were applied to classify IKONOS imagery taken in April 2000. As a whole, the segment based classification shows better performance in classifying the high resolution satellite imagery of IKONOS. Through the comparison of accuracies and kappa values of the above 3 classification methods, the segment based classification with maximum likelihood was proved to be the best suitable for preparing the vegetation map with the help of IKONOS imagery. This is true not only from the viewpoint of accuracy, but also for the purpose of preparing a polygon based vegetation map. On the basis of the segment based classification with the maximum likelihood, a digital vegetation map in which each vegetation class is delimitated in the form of a polygon could be prepared.

Comparison Study of the Performance of CNN Models with Multi-view Image Set on the Classification of Ship Hull Blocks (다시점 영상 집합을 활용한 선체 블록 분류를 위한 CNN 모델 성능 비교 연구)

  • Chon, Haemyung;Noh, Jackyou
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.140-151
    • /
    • 2020
  • It is important to identify the location of ship hull blocks with exact block identification number when scheduling the shipbuilding process. The wrong information on the location and identification number of some hull block can cause low productivity by spending time to find where the exact hull block is. In order to solve this problem, it is necessary to equip the system to track the location of the blocks and to identify the identification numbers of the blocks automatically. There were a lot of researches of location tracking system for the hull blocks on the stockyard. However there has been no research to identify the hull blocks on the stockyard. This study compares the performance of 5 Convolutional Neural Network (CNN) models with multi-view image set on the classification of the hull blocks to identify the blocks on the stockyard. The CNN models are open algorithms of ImageNet Large-Scale Visual Recognition Competition (ILSVRC). Four scaled hull block models are used to acquire the images of ship hull blocks. Learning and transfer learning of the CNN models with original training data and augmented data of the original training data were done. 20 tests and predictions in consideration of five CNN models and four cases of training conditions are performed. In order to compare the classification performance of the CNN models, accuracy and average F1-Score from confusion matrix are adopted as the performance measures. As a result of the comparison, Resnet-152v2 model shows the highest accuracy and average F1-Score with full block prediction image set and with cropped block prediction image set.

Comparison of Data Mining Classification Algorithms for Categorical Feature Variables (범주형 자료에 대한 데이터 마이닝 분류기법 성능 비교)

  • Sohn, So-Young;Shin, Hyung-Won
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.551-556
    • /
    • 1999
  • In this paper, we compare the performance of three data mining classification algorithms(neural network, decision tree, logistic regression) in consideration of various characteristics of categorical input and output data. $2^{4-1}$. 3 fractional factorial design is used to simulate the comparison situation where factors used are (1) the categorical ratio of input variables, (2) the complexity of functional relationship between the output and input variables, (3) the size of randomness in the relationship, (4) the categorical ratio of an output variable, and (5) the classification algorithm. Experimental study results indicate the following: decision tree performs better than the others when the relationship between output and input variables is simple while logistic regression is better when the other way is around; and neural network appears a better choice than the others when the randomness in the relationship is relatively large. We also use Taguchi design to improve the practicality of our study results by letting the relationship between the output and input variables as a noise factor. As a result, the classification accuracy of neural network and decision tree turns out to be higher than that of logistic regression, when the categorical proportion of the output variable is even.

  • PDF

Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames

  • Kim, Seung-Eock;Vu, Quang-Viet;Papazafeiropoulos, George;Kong, Zhengyi;Truong, Viet-Hung
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • In this paper, the efficiency of five Machine Learning (ML) methods consisting of Deep Learning (DL), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Gradient Tree Booting (GTB) for regression and classification of the Ultimate Load Factor (ULF) of nonlinear inelastic steel frames is compared. For this purpose, a two-story, a six-story, and a twenty-story space frame are considered. An advanced nonlinear inelastic analysis is carried out for the steel frames to generate datasets for the training of the considered ML methods. In each dataset, the input variables are the geometric features of W-sections and the output variable is the ULF of the frame. The comparison between the five ML methods is made in terms of the mean-squared-error (MSE) for the regression models and the accuracy for the classification models, respectively. Moreover, the ULF distribution curve is calculated for each frame and the strength failure probability is estimated. It is found that the GTB method has the best efficiency in both regression and classification of ULF regardless of the number of training samples and the space frames considered.

A review and comparison of convolution neural network models under a unified framework

  • Park, Jimin;Jung, Yoonsuh
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.161-176
    • /
    • 2022
  • There has been active research in image classification using deep learning convolutional neural network (CNN) models. ImageNet large-scale visual recognition challenge (ILSVRC) (2010-2017) was one of the most important competitions that boosted the development of efficient deep learning algorithms. This paper introduces and compares six monumental models that achieved high prediction accuracy in ILSVRC. First, we provide a review of the models to illustrate their unique structure and characteristics of the models. We then compare those models under a unified framework. For this reason, additional devices that are not crucial to the structure are excluded. Four popular data sets with different characteristics are then considered to measure the prediction accuracy. By investigating the characteristics of the data sets and the models being compared, we provide some insight into the architectural features of the models.