• 제목/요약/키워드: Classical Test Theory

검색결과 74건 처리시간 0.025초

인장 및 굽힘 복합재료 시험편의 커플링 완화 방안 (Reduction of Coupling in Tensile and Flexure Composite Specimens)

  • 정일섭
    • Composites Research
    • /
    • 제12권2호
    • /
    • pp.82-90
    • /
    • 1999
  • 일반적 직교이방성 복합재료의 기계적 성질을 측정하기 위한 간단한 실험방법으로 편축시험편에 대한 인장시험 또는 굽힘시험이 흔히 사용된다. 이때 재료의 특성상 인장시험편에서는 전단변형이 발생될 수밖에 없으며, 굽힘시험편에서는 비틀림변형을 피할 수 없다. 그러나, 시험장치의 그림 또는 지지대에서의 구속은 커플링에 의한 변형을 수용할 수 없고, 따라서 이에 따른 응력집중을 유발한다. 결과적으로 불균일한 변형장과 응력장을 낳게되어 측정값의 정확도를 저하시키며, 조기 파손으로 인한 복합재료 강도의 과소평가를 가져오게 된다. 본 연구에서는 이를 완화하기 위한 방안으로 시험편 경계면 형상의 변화를 제안한다. 이를 위하여 경사좌표계에서의 적층이론을 유도하며, 각 시험조건에 대한 특성방정식을 구한다. 유한요소해석을 수행하여 특정방정식을 이용하여 수정된 시험편 형상의 유용성을 보인다.

  • PDF

A numerical framework of the phenomenological plasticity and fracture model for structural steels under monotonic loading

  • He, Qun;Yam, Michael C.H.;Xie, Zhiyang;Lin, Xue-Mei;Chung, Kwok-Fai
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.587-602
    • /
    • 2022
  • In this study, the classical J2 flow theory is explicitly proved to be inappropriate to describe the plastic behaviour of structural steels under different stress states according to the reported test results. A numerical framework of the characterization of the strain hardening and ductile fracture initiation involving the effect of stress states, i.e., stress triaxiality and Lode angle parameter, is proposed based on the mechanical response of structural steels under monotonic loading. Both effects on strain hardening are determined by correction functions, which are implemented as different modules in the numerical framework. Thus, other users can easily modify them according to their test results. Besides, the ductile fracture initiation is determined by a fracture locus in the space of stress triaxiality, Lode angle parameter, and fracture strain. The numerical implementation of the proposed model and the corresponding code are provided in this paper, which are also available on GitHub. The validity of the numerical procedure is examined through single element tests and the accuracy of the proposed model is verified by existing test results.

Experimental and analytical studies on stochastic seismic response control of structures with MR dampers

  • Mei, Zhen;Peng, Yongbo;Li, Jie
    • Earthquakes and Structures
    • /
    • 제5권4호
    • /
    • pp.395-416
    • /
    • 2013
  • The magneto-rheological (MR) damper contributes to the new technology of structural vibration control. Its developments and applications have been paid significant attentions in earthquake engineering in recent years. Due to the shortages, however, inherent in deterministic control schemes where only several observed seismic accelerations are used as the trivial input and in classical stochastic optimal control theory with assumption of white noise process, the derived control policy cannot effectively accommodate the performance of randomly base-excited engineering structures. In this paper, the experimental and analytical studies on stochastic seismic response control of structures with specifically designed MR dampers are carried out. The random ground motion, as the base excitation posing upon the shaking table and the design load used for structural control system, is represented by the physically based stochastic ground motion model. Stochastic response analysis and reliability assessment of the tested structure are performed using the probability density evolution method and the theory of extreme value distribution. It is shown that the seismic response of the controlled structure with MR dampers gain a significant reduction compared with that of the uncontrolled structure, and the structural reliability is obviously strengthened as well.

Coupled IoT and artificial intelligence for having a prediction on the bioengineering problem

  • Chunping Wang;Keming Chen;Abbas Yaseen Naser;H. Elhosiny Ali
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.127-140
    • /
    • 2023
  • The vibration of microtubule in human cells is the source of electrical field around it and inside cell structure. The induction of electrical field is a direct result of the existence of dipoles on the surface of the microtubules. Measuring the electrical fields could be performed using nano-scale sensors and the data could be transformed to other computers using internet of things (IoT) technology. Processing these data is feasible by artificial intelligence-based methods. However, the first step in analyzing the vibrational behavior is to study the mechanics of microtubules. In this regard, the vibrational behavior of the microtubules is investigated in the present study. A shell model is utilized to represent the microtubules' structure. The displacement field is assumed to obey first order shear deformation theory and classical theory of elasticity for anisotropic homogenous materials is utilized. The governing equations obtained by Hamilton's principle are further solved using analytical method engaging Navier's solution procedure. The results of the analytical solution are used to train, validate and test of the deep neural network. The results of the present study are validated by comparing to other results in the literature. The results indicate that several geometrical and material factors affect the vibrational behavior of microtubules.

Controcller design using parametric neural networks

  • HashemiNejad, M.;Murata, J.;Banihabib, M.E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.616-621
    • /
    • 1994
  • Neural Networks (henceforth NNs, with adjective "artificial" implied) has been used in the field of control however, has a long way to fit to its abilities. One of the best ways to aid it is "supporting it with the knowledge about the linear classical control theory". In this regard we hive developed two kinds of parametric activation function and then used them in both identification and control strategy. Then using a nonlinear tank system we are to test its capabilities. The simulation results for the identification phase is promising. phase is promising.

  • PDF

센서유형별 측정 변형률을 이용한 철근콘크리트 보의 처짐추정에 관한 실험적 연구 (An experimental study on estimating deflection of RC beam using resistive strain gauge and fiber optic sensor)

  • 이규완;박기태;박흥석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.517-522
    • /
    • 2000
  • In the past few years, the nondestructive inspection technology has greatly developed due to the increased necessity to gain a complete understanding of the bridge behavior. Especially, the deformations of bridges contain a lot of informations about its health state. By measuring these deformations it is possible to analyze the loading and aging behavior of the structure. However, the current methods (such as LVDT, dial gage, optical displacement tranceducer, etc) are often of changeable application on site and have the limitations of installation. In this paper, the classical beam theory was reviewed and the deflections of structure are estimated using measured strain which is easy to acquire. The applicability of this algorithm is verified by a preliminary steel beam test and two types of concrete beam tests. Also fiber optic sensors as well as resistive strain gages were installed in the concrete beams to establish the applicability of fiber optic sensors in the field of civil engineering.

  • PDF

유연복합재 구동축의 동특성에 관한 실험 분석 (Experimental Investigation Into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts)

  • 신응수
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.93-98
    • /
    • 2006
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A test rig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spin-up testings. It turns out that the analytic results are in good agreement with the experimental ones.

단순화된 볼륨 요소 개념을 고려한 인쇄회로기판 동특성에 관한 연구 (A study on the dynamic characteristic of printed circuit board considering the concept of simplified representative volume elements.)

  • 서현석;김성훈;황도순;김대영;이상곤;이주훈;채장수;김태경;김춘삼
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.78-81
    • /
    • 2002
  • Printed Circuit Boards for satellite are composed of multi-layered copper plate and glass epoxy. Each copper layer have the complicated and different pattern to operate correctly for its mission. Especially. copper layer give effect on the PCB stiffness seriously. But It can make more complicate to predict the exact stiffness of PCB. In KOMPSAT-2 program, too many type of PCB are used for each electronic unit, and they have different type of pattern of copper layer. Solar array regulator has two type of PCB and it will be considered for this study. In this study. we calculate the PCB board stiffness of KOMPSAT-2 SAR unit considering the concept of simplified representative volume element. It will be correlated with the test results under KOMPSAT-2 vibration environmental condition to increase the reliability of this study.

  • PDF

FRP-콘크리트 합성 바닥판에 적용 가능한 FRP 부재의 최소 두께 (Minimum Thickness of FRP Member Applicable to FRP-Concrete Composite Deck)

  • 조근희;박성용;김성태;조정래;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.317-320
    • /
    • 2006
  • In order to determine a minimum thickness of the pultruded GFRP panel as a structural member, some experimental studies were performed. GFRP tubes with 2mm, 4mm, 6mm thickness were manufactured by pultrusion process. First, coupon tests for finding mechanical properties were carried out. Comparisons between test results and analysis results based on classical laminate theory showed large differences in case of 2mm, 4mm specimens. The reason is that it is difficult to apply appropriate pultruding force and keep layered stitched fabric flat for the pultrusion process of complex shaped FRP member with small thickness. On the consequence, we decide 6mm as a minimum thickness of FRP member. Second, 4-point bending tests were performed and the results with compared with numerical analysis. The behavior of FRP tube can be exactly predicted by numerical analysis if buckling analysis is included.

  • PDF

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.