• Title/Summary/Keyword: Classical Lamination Theory

Search Result 51, Processing Time 0.025 seconds

Strength Prediction Model and The Internet Service of Fused Deposition Modeling (Fused Deposition Modeling의 강도예측모델과 인터넷 서비스)

  • 백창일;추원식;이선영;안성훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.179-182
    • /
    • 2002
  • Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys' Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of plastic materials, and the parts made from FDM were often used as load-carrying elements. Because FDM deposits materials in about $300\mutextrm{m}$ thin filament with designated orientation, parts made from FDM show anisotropic material properties. This paper proposes an analytic model to predict the tensile strength of FDM parts. Applying the Classical Lamination Theory, which was developed for laminated composite materials, a computer code was implemented. Tsai-Wu failure criterion was added to the code to predict the failure of the FDM parts. The tensile strengths predicted by the analytic model were compared with experimental data. The data and prediction agreed reasonably well to prove the validity of the model. In addition, a web-based advisory service was developed to provide to strength prediction and design rules for FDM parts.

  • PDF

Buckling of symmetrically laminated quasi-isotropic thin rectangular plates

  • Altunsaray, Erkin;Bayer, Ismail
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.305-320
    • /
    • 2014
  • The lowest critical value of the compressive force acting in the plane of symmetrically laminated quasi-isotropic thin rectangular plates is investigated. The critical buckling loads of plates with different types of lamination and aspect ratios are parametrically calculated. Finite Differences Method (FDM) and Galerkin Method are used to solve the governing differential equation for Classical Laminated Plate Theory (CLPT). The results calculated are compared with those obtained by the software ANSYS employing Finite Elements Method (FEM). The results of Galerkin Method (GM) are closer to FEM results than those of FDM. In this study, the primary aim is to conduct a parametrical performance analysis of proper plates that is typically conducted at preliminary structural design stage of composite vessels. Non-dimensional values of critical buckling loads are also provided for practical use for designers.

Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan;Lee, Sang-Mae;Jim S. Sirkis
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

Experimental Investigation Into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts (유연복합재 구동축의 동특성에 관한 실험 분석)

  • Shin Eung-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A test rig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spin-up testings. It turns out that the analytic results are in good agreement with the experimental ones.

A New and Efficient C0 Laminated Curved Beam Element (효율적인 C0 적층 곡선보 요소의 개발)

  • Kim, Jin-Gon;Kang, Sang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.559-566
    • /
    • 2003
  • In this study, we present a new highly accurate two-dimensional curved composite beam element. The present element, which is based on the Hellinger-Reissner variational principle and classical lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the (9x9) element stiffness matrix. It should be noted that the stacking sequences without transverse deformation to the load plane makes a two dimensional analysis of curved composite beams practically useful . Several numerical examples confirm the superior locking-free behavior of the present higher-order laminated curved beam element.

Thermal Strain Analysis of Composite Materials by Electronic Speckle Pattern Interferometry

  • Kim, Koung-Suk;Jang, Wan-Shik;Hong, Myung-Seak;Kang, Ki-Soo;Jung, Hyun-Chul;Kang, Young-Jun;Yang, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.477-482
    • /
    • 2000
  • This study discusses a non-contact optical technique (electronic speckle pattern interferometry) that is well suited for thermal deformation measurement without any surface preparation and compensating process. Fiber reinforced plastics ($[0]_{16},\;[0/90]_{8S}$) were analyzed by ESPI to determine their thermal expansion coefficients. The thermal expansion coefficient of the transverse direction of a uniaxial composite is evaluated as $48.78{\times}10^{-6}(1/^{\circ}C)$. Also, the thermal expansion coefficient of the cross-ply laminate $[0/90]_{8S}$ is numerically estimated as $3.23{\times}10^{-6}(1/^{\circ}C)$ that is compared with that measured by ESPI.

  • PDF

A study on the dynamic characteristic of printed circuit board considering the concept of simplified representative volume elements. (단순화된 볼륨 요소 개념을 고려한 인쇄회로기판 동특성에 관한 연구)

  • 서현석;김성훈;황도순;김대영;이상곤;이주훈;채장수;김태경;김춘삼
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.78-81
    • /
    • 2002
  • Printed Circuit Boards for satellite are composed of multi-layered copper plate and glass epoxy. Each copper layer have the complicated and different pattern to operate correctly for its mission. Especially. copper layer give effect on the PCB stiffness seriously. But It can make more complicate to predict the exact stiffness of PCB. In KOMPSAT-2 program, too many type of PCB are used for each electronic unit, and they have different type of pattern of copper layer. Solar array regulator has two type of PCB and it will be considered for this study. In this study. we calculate the PCB board stiffness of KOMPSAT-2 SAR unit considering the concept of simplified representative volume element. It will be correlated with the test results under KOMPSAT-2 vibration environmental condition to increase the reliability of this study.

  • PDF

Response of fiber reinforced plastic chimneys to wind loads

  • Awad, A.S.;El Damatty, A.A.;Vickery, B.J.
    • Wind and Structures
    • /
    • v.3 no.2
    • /
    • pp.83-96
    • /
    • 2000
  • Due to their high corrosion and chemical resistance, fiber reinforced plastics (FRP) are becoming widely used as the main structural material for industrial chimneys. However, no national code currently exists for the design of such type of chimneys. The purpose of this study is to investigate analytically the response of FRP chimneys to wind loads. The classical lamination theory is used to substitute the angle-ply laminate of a FRP chimney with an equivalent orthotropic material that provides the same stiffness. Dynamic wind loads are applied to the equivalent chimney to evaluate its response to both along and across wind loads. A parametric study is then conducted to identify the material and geometric parameters affecting the response of FRP chimneys to wind loads. Unlike the across-wind response, the along-wind tip deflection is found to be highly dependent on the angle of orientation of the fibers. In general, the analysis shows that FRP chimneys are very vulnerable to across-wind oscillations resulting from the vortex shedding phenomenon.

A study on structural health monitoring of composite structures by using embedded fiber Bragg grating sensors (광섬유 브래그 격자 센서를 이용한 복합재료 구조물의 건전성 감시 기법 개발에 관한 연구)

  • Kim Won-Seok;Lee Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.107-110
    • /
    • 2004
  • In this paper, a new structural health monitoring technique for composite laminates through the use of embedded fiber Bragg grating (FBG) sensors is presented. The method traces the ply stress states of a laminate and compares them with failure criteria during the service time of structures. The ply stress state of every ply composing the composite laminate can be obtained using classical lamination theory by embedded FBG sensors in the laminate. Graphite/epoxy laminate specimens, embedded with three FBG sensors, were fabricated. Tension tests were performed to evaluate the ply stress states tracing technique. Experimental results show that laminates experience fracture when the ply stress states are over the boundaries of failure criteria. In this method, critical damage can be detected by the ply stress states which are close to the boundaries of the failure criteria.

  • PDF

A Study on thermal deformation behavior of laminates composed of different material layers. (다종 재료층으로 구성된 적층판의 열변형 거동 연구)

  • 정재한;구남서;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.54-57
    • /
    • 2000
  • Thermal deformation behavior has been investigated for unsymmetric laminates composed of various kinds of material layers, such as stainless steel, aluminum, carbon/epoxy or glass/epoxy. The thermal deformations of unsymmetric laminates were predicted using the classical lamination theory and compared with those obtained from experimental measurement. In the case of unsymmetric laminate composed of stainless steel and aluminum layer, the experimental results were agreed well with the values predicted. But in the case of unsymmetric laminate composed of fiber composite layers, there was a considerable difference of thermal deformation between the prediction and experimental measurement, which may be from the change of material properties of fiber composite layers for temperature variation.

  • PDF