• 제목/요약/키워드: Class I histone deacetylases

검색결과 5건 처리시간 0.023초

Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy

  • Eom, Gwang Hyeon;Kook, Hyun
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.131-138
    • /
    • 2015
  • Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes: I, II, III, and IV. By structural similarities, class II HDACs are then subdivided into IIa and IIb. Among class I and II HDACs, HDAC2, 4, 5, and 9 have been reported to be involved in hypertrophic responses; HDAC4, 5, and 9 are negative regulators, whereas HDAC2 is a pro-hypertrophic mediator. The molecular function and regulation of class IIa HDACs depend largely on the phosphorylation-mediated cytosolic redistribution, whereas those of HDAC2 take place primarily in the nucleus. In response to stresses, posttranslational modification (PTM) processes, dynamic modifications after the translation of proteins, are involved in the regulation of the activities of those hypertrophy-related HDACs. In this article, we briefly review 1) the activation of HDAC2 in the development of cardiac hypertrophy and 2) the PTM of HDAC2 and its implications in the regulation of HDAC2 activity.

Histone Deacetylases and their Inhibitors as Potential Therapeutic Drugs for cholangiocarcinoma - Cell Line findings

  • Sriraksa, Ruethairat;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2503-2508
    • /
    • 2013
  • Histone deacetylation mediated by histone deacetylases (HDACs) has been reported as one of the epigenetic mechanisms associated with tumorigenesis. The poor responsiveness of anticancer drugs found with cholangiocarcinoma (CCA) leads to short survival rate. We aimed to investigate mRNA expression of HDACs class I and II, and the effect of HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA), in CCA in vitro. Expression of HDACs was studied in CCA cell lines (M213, M214 and KKU-100) and an immortal cholangiocyte (MMNK1) by semi-quantitative reverse transcription-PCR. SAHA and VPA, as well as a classical chemotherapeutic drug 5 -fluorouacil (5-FU) were used in this study. Cell proliferation was determined by sulforhodamine assay. $IC_{50}$ and $IC_{20}$ were then analyzed for each agent and cell line. Moreover, synergistic potentional of VPA or SAHA in combination with 5-FU at sub toxic does ($IC_{20}$) of each agent was also evaluated. Statistic difference of HDACs expression or cell proliferation in each experimental condition was analyzed by Student's t-test. The result demonstrated that HDACs were expressed in all studied cell types. Both SAHA and VPA inhibited cell proliferation in a dose-dependent manner. Interestingly, KKU-100 which was less senstitive to classical chemotheraoeutic 5-FU was highly was sensitive to HDAC inhibitors. Simultaneous combination of subtoxic doses of HDAC inhibitors and 5-FU signiicantly inhibited cell proliferation in CCA cell lines compared to single sgent treatment($P{\leq}0.01$), while sequentially combined treatments were less effective. The present study showed inhibitory effects of HDACIs on cell proliferation in CCA cell lines, with synergistic antitumor potential demonstrated by simultaneous combination of VPA or SAHA with 5-FU, suggesting a novel alternative therapeutic strategy in effective treatment of CCA.

Sirt1 and the Mitochondria

  • Tang, Bor Luen
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.87-95
    • /
    • 2016
  • Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1's deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1's role in caloric restriction and impacts on longevity. The notion of Sirt1's regulation of PGC-$1{\alpha}$ activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1's regulation of mitochondrial biogenesis and turnover, in relation to PGC-$1{\alpha}$ deacetylation and various aspects of cellular physiology and disease.

Comparison of Expression Signature of Histone Deacetylases (HDACs) in Mesenchymal Stem Cells from Multiple Myeloma and Normal Donors

  • Ahmadvand, Mohammad;Noruzinia, Mehrdad;Soleimani, Masoud;Abroun, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3605-3610
    • /
    • 2016
  • Background: Histone acetylation in chromatin structures plays a key role in regulation of gene transcription and is strictly controlled by histone acetyltransferase (HAT) and deacetylase (HDAC) activities. HDAC deregulation has been reported in several cancers. Materials and Methods: The expression of 10 HDACs (including HDAC class I and II) was studied by quantitative reverse transcription-PCR (qRT-PCR) in a cohort of mesenchymal stem cells (MM-MSCs) from 10 multiple myeloma patients with a median age 60y. The results were compared with those obtained for normal donors. Then, a coculture system was performed between MM-MSCs and u266 cell line, in the presence or absence of sodium butyrate (NaBT), to understand the effects of HDAC inhibitors (HDACi) in MM-MSCs on multiple myeloma cases. Also, the interleukin-6 (IL-6) and vascular endothelial growth factor (VEGFA) gene expression level and apoptotic effects were investigated in MM-MSCs patients and control group following NaBT treatment. Results: The results indicated that upregulated (HDACs) and downregulated (IL6 and VEGFA) genes were differentially expressed in the MM-MSCs derived from patients with multiple myeloma and ND-MSCs from normal donors. Comparison of the MM-MSCs and ND-MSCs also showed distinct HDACs expression patterns. For the first time to our knowledge, a significant increase of apoptosis was observed in coculture with MM-MSCs treated with NaBT. Conclusions: The obtained findings elucidate a complex set of actions in MSCs in response to HDAC inhibitors, which may be responsible for anticancer effects. Also, the data support the idea that MSCs are new therapeutic targets as a potential effective strategy for MM.