• Title/Summary/Keyword: Clamp voltage ratio

Search Result 27, Processing Time 0.022 seconds

A Zero Voltage Switching Phase Shift Full Bridge Converter with Separated Primary Winding

  • Kim, Young-Do;Kim, Chong-Eun;Cho, Kyu-Min;Park, Ki-Bum;Cho, In-Ho;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.379-381
    • /
    • 2008
  • Generally additional leakage inductance and two clamp diodes are adopted into the conventional phase shift full bridge (PSFB) converter for reducing the voltage stress of secondary rectifier diodes and extending the range of zero voltage switching (ZVS) operation. However, since additional leakage inductance carries the ac current similar to the primary one, the core and copper loss oriented from additional leakage inductance can be high enough to decrease the whole efficiency of DC/DC converter. Therefore, in this paper, a new ZVS phase shift full bridge converter with separated primary winding (SPW) is proposed. Proposed converter makes the transformer and additional leakage inductor with one ferrite core. Using this method, leakage inductance is controlled by the winding ratio of separated primary winding. Moreover, by manufacturing the both magnetic components with one core, size and core loss can be reduced and it turns out the improvement of efficiency and power density of DC/DC converter. The operational principle of proposed converter is analyzed and verified by the 1.2kW prototype.

  • PDF

Three-Phase ZVS DC-DC Converter with Low Transformer Turn Ratio for High Step-up and High Power Applications (낮은 변압기 턴비를 갖는 고승압.대전력용 3상 ZVS DC-DC컨버터)

  • Kim, Joon-Geun;Park, Chan-Soo;Choi, Se-Wan;Park, Ga-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.242-249
    • /
    • 2011
  • The proposed converter has easy device selection for high step-up and high power applications since boost half bridge and voltage doubler cells are connected, respectively, in parallel and series in order to increase output power and voltage. Especially, optimized design of high frequency transformers is possible owing to reduced turn ratio and eliminated dc offset, and distributed power through three cores is beneficial to low profile and thermal distribution. The proposed converter does not necessitate start-up circuit and additional clamp circuit due to the use of whole duty range between 0 and 1 and is suitable for applications with wide input voltage range. Also, high efficiency can be achieved since ZVS turn on of switches are achieved in wide duty cycle range and ZCS turn on and off of diodes are achieved. The proposed converter was validated through 5 kW prototype.

Modular Line-connected Photovoltaic PCS (모듈형 계통연계 PV PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.289-292
    • /
    • 2007
  • The modular line-connected photovoltaic PCS (power conditioning system) is proposed. The proposed system consists of a step-up DC-DC converter and a full-bridge inverter. A step-up DC-DC converter using a dual series-resonant rectifier circuit and a active-clamp circuit is proposed to achieve a high efficiency and a high input-output voltage ratio efficiently. An IncCond (incremental conductance) MPPT (maximum power point tracking) algorithm that improves MPPT characteristic is used. By control a inverter using a linearized output current controller, a unity power factor is achieved. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed algorithms and controllers is proved by experiments.

  • PDF

Modular Line-connected Photovoltaic PCS (모듈형 계통연계 태양광 PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • In this paper, the modular line-connected photovoltaic PCS (photovoltaic power conditioning system) is proposed. A step-up DC-DC converter using a active-clamp circuit and a dual series-resonant rectifier is proposed to achieve a high efficiency and a high input-output voltage ratio efficiently. An IncCond (incremental conductance) MPPT (maximum power point tracking) algorithm that improves MPPT characteristic is used. The PV module current is estimated without using a DC current sensor. By control a inverter using a linearized output current controller, a unity power factor is achieved. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed DC-DC converter and controllers is proved by experiments.

A Study About PDMS-Glass Based Thermopneumatic Micropump Integrated with Check Valve (체크밸브가 달린 열공압 방식의 PDMS-유리마이크로 펌프에 관한 연구)

  • Ko, Young-June;Cho, Woong;Ahn, Yoo-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.720-727
    • /
    • 2008
  • Microfluidic single chip integrating thermopneumatic micropump and micro check valve are developed. The micropump and micorvalve are made of biocompatible materials, glass and PDMS, so as to be applicable to the biochip. By using the passive-type check valve, backward flow and fluid leakage are blocked and flow control is stable and precise. The chip is composed of three PDMS layers and a glass substrate. In the chip, flow channel and pump chamber were made on the PDMS layers by the replica molding technique and pump heater was made on the glass substrate by Cr/Au deposition. Diameter of the pump chamber is 7 mm and the width and depth of the channel are 200 and $180{\mu}m$, respectively. The PDMS layers chip and the heater deposited glass chip are combined by a jig and a clamp for pumping operation, and they are separable so that PDMS chip is used as a disposable but the heater chip is able to be used repeatedly. Pumping performance was simulated by CFD software and investigated experimentally. The performance was the best when the duty ratio of the applied voltage to the heater was 33%.

Impulse Degradation Behavior of ZPCCYE Varistors with Y2O3/Er2O3 Ratio

  • Nahm, Choon-Woo;Park, Jong-Hyuk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.213-217
    • /
    • 2011
  • The nonlinear electrical properties and degradation behavior against an impulse-current of 400 A in the ZnO-$Pr_6O_{11}$-CoO-$Cr_2O_3$-$Y_2O_3$-$Er_2O_3$ (ZPCCYE) varistors were investigated with different $Y_2O_3/Er_2O_3$ ratios. The $Y_2O_3/Er_2O_3$ mole ratio has a significant effect on nonlinear electrical properties and impulse degradation behavior of the ZPCCYE varistors. The varistors added with $Y_2O_3/Er_2O_3$ = 0.5/0.5 exhibited the best nonlinear properties with 39 in nonlinear coefficient (${\alpha}$) and the best clamp characteristics, in which the clamping voltage ratio (K) was in the range of K = 1.62-2.18 at an impulse-current of 1-50 A. The varistors added with $Y_2O_3/Er_2O_3$ = 0.25/0.5 exhibited the best electrical stability, with $%{\Delta}E_{1mA/cm^2}$=-5.6%, $%{\Delta}{\alpha}$ = 6.7%, and $%{\Delta}J_L$ = -14.6% against an impulse-current of 400 A. On the contrary, the varistors added with $Y_2O_3/Er_2O_3$ = 0.5/0.5 were destroyed applying an impulse-current of 400 A.

Design of a High Power Three-Phase ZVS Push-Pull Converter (대전력 3상 ZVS 푸쉬풀 컨버터 설계)

  • Park, Jun-Sung;Lee, Sang-Won;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.209-218
    • /
    • 2011
  • In low voltage high current applications such as fuel cells the current-fed DC-DC converter which has small ripple current and turn ratio is more efficient. In the applications larger than 5kW the conventional single-phase current-fed converter based on full-bridge, half-bridge or push-pull topologies has high current burden of devices such as switches, and the selection and optimized design of the devices are not easy. In this paper a three-phase active-clamped current-fed push-pull DC-DC converter suitable for high power high step-up applications is proposed. The proposed converter has reduced current burden and is suitable for wide input voltage applications due to the use of whole duty cycle range. Design methods of main components including three-phase high frequency transformers are provided, and the validity and performance of the proposed converter are proved from a 5kW prototype.