• Title/Summary/Keyword: Clamp Force

검색결과 57건 처리시간 0.027초

A Study on the Sliding Distance and the Proper Position of Supporter with respect to the Wedge Angle in the Wedge Type Rail Clamp

  • Han, Dong-Seop;Han, Geun-Jo;Lee, Seong-Wook
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.115-120
    • /
    • 2006
  • The rail clamp is the device to prevent the crane slips along rails from the wind blast as well as to locate a container crane in the set position in operating mode. In this study we conduct the research for the sliding distance of rail clamp and the proper position of supporter with respect to the wedge angle in the wedge type rail clamp. The sliding distance to display the clamping force of the jaw pad corresponding to the design wind speed criteria is determined by the total displacement of the rail clamp at the roller center and the wedge angle. And the supporter is the device to prevent the overload which is applied on each part of the rail clamp by wind speed increment, because a clamping force is generated by the sliding of the wedge due to the wind. Accordingly the position of the supporter to prevent the overload is determined by analyzing the forces applied to the rail clamp. In order to analyze the sliding distance and the proper position of supporter with respect to the wedge angle as the wind speed is 40m/s, 5-kinds of wedge angles, such as 2, 4, 6, 8, $10^{\circ}$, were adopted as the design parameter.

  • PDF

쐐기각에 따른 레일클램프의 초기 압착력과 밀림거리 사이의 관계 (Relationship between the Initial Clamping Force and the Sliding Distance of the Rail Clamp according to the Wedge Angle)

  • 한동섭;이성욱;권순규;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.379-380
    • /
    • 2006
  • In this study we dealt with the relationship between the initial clamping force and the sliding distance in the wedge type rail clamp. The sliding distance is determined by the wedge angle and the initial clamping force. In order to derive the relation formula between the wedge angle and the sliding distance, we ad opt 5-kinds of the wedge angle, such as 2, 4, 6, 8, $10^{\circ}$. And then we analyze the effect of the initial clamping force on the sliding distance.

  • PDF

EPB 시스템의 센서 고장 허용 제어 기법 (Fault Tolerant Control of Sensor Fault of EPB System)

  • 이원구;이영옥;장민석;이충우;정정주;정한별
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.8-17
    • /
    • 2010
  • In this paper, a fault tolerant control against sensor faults of electric parking brake (EPB) is proposed. Fault tolerant control method of EPB system is strongly demanded since sensor faults can endanger a driver's safety. In this paper, a clamp force estimation method is presented using motor's armature current and angular velocity. Clamp force estimation method is applied for fault detection method with parity equations. The goal of the detection method is to detect and identify faults in encoder, current sensor, force sensor, and parking cable. And a switching logic for fault tolerant control against the three sensor faults is suggested. Experimental results show that the proposed force estimation method satisfies the specifications of EPB system. The effectiveness of the fault detection method is validated with experimental results. Although a single sensor fault happens, EPB system with the proposed fault detection method does not develop into a failure on subsystem or system level.

자동차용 스프링클램프 조임력 자동측정시스템의 개발 (Development of the Effective Clamping Force Measuring System for Spring Clamp)

  • 오기석;조명우;서태일
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.95-101
    • /
    • 2000
  • The purpose of this study is to develop an improved measuring system, which allows for effectively measure spring clamping forces. This system consists of eight or twelve measuring points in order to acquire the clamping force distribution of the whole range of spring clamp. Each measuring point consists of load cells equipped with 4 strain gauges. Using different bearings, we calibrate the roundness of the measuring points. For quality control and database construction, a software system is established. furthermore, uncertainty is calculated to validate the confidence of this system. Various experiments confirm the effectiveness of this measuring system.

  • PDF

The Performance Evaluation of a Hydraulic and Magnetic Clamp Device Manufactured to Transport with Safety the Curved Steel Plate Required for Shipbuilding

  • Moon, Byung Young;Park, Kwang Bok;Hong, Young Jun;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.527-535
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was attempted to realize a magnetic clamp crane system that uses 8 simultaneously actuating individual hydraulic cylinders. Through this approach, a Sr type of ferritic permanent magnet ($SrO{\cdot}6Fe_2O_3$), not the previously employed electro-magnet, was utilized for the purpose of lifting and transporting the heavy weighted and oversized curved steel plates used for manufacturing the ships. This study is aimed at manufacturing and developing the hydraulic magnetic clamp prototype, which is composed of three main parts - the base frame, cylinder joint, and magnet joint - in order to safely transport such curved steel plates. Furthermore, this research was pursued to conduct a performance evaluation as to the prototype manufacture and acquire the planned quantity value and the development purpose items. The most significant item for a performance evaluation was estimated for the magnetic adhesive force (G) and in this process, a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc) was utilized. In addition, other relevant items such as hoist tension (kN), transportation time (sec), and the applied load (Kgf) exerted on the hydraulic cylinders were also evaluated in order to acquire the optimum quantity value. As a result of the evaluation, the relevant device turned out to be suitable for safely transporting the curved steel plates.

영구자석을 적용한 선박용 곡면 철판 이송용 유압식 마그네틱 클램프 이송장치의 성능평가에 대한 고찰 (Performance Evaluation of Hydraulic and Magnetic Clamp Crane for Transporting Curved Steel Plate for Shipbuilding, with Permanent Magnet Applied)

  • 문병영;이성범;이기열
    • 한국해양공학회지
    • /
    • 제29권4호
    • /
    • pp.322-330
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was developed to realize a magnetic clamp crane system by simultaneously actuating eight individual hydraulic cylinders. In this approach, an Sr-type of ferritic permanent magnet (SrO· 6Fe2O3), rather than the previous electromagnet, was utilized for the purpose of lifting and transporting the large curved steel plates used for manufacturing ships. This study had the goal of developing and manufacturing a hydraulic, magnetic clamp prototype composed of three main parts, including the base frame, cylinder joint, and magnet joint, in order to safely transport curved steel plates. Furthermore, this research included a performance evaluation of the manufactured prototype and acquired the purposed quantity value in the performance test. The most significant item, the magnetic adhesive force (G), was evaluated in a performance test, which utilized a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc). In particular, relevant items such as the hoist tension (kN), transportation time (s), and applied load (Kgf) on the hydraulic cylinders were also evaluated in order to determine the optimum values.

쐐기형 Rail Clamp의 하중분석 (Load analysis of Wedge type Rail Clamp)

  • 한근조;안찬우;김태형;심재준;환동섭;이호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we design a wedge type rail clamp which can protect container crane from wind with constant clamping force regardless of the operating period. When we design wedge type rail clamp. it is important to determine the angle of wedge and analyze a contact condition of roller and wedge so that we might develop a rail clamp with variable capacity. Therefore, this paper suggest a process to decide wedge angles within feasible range which could be obtained using load analysis and FEA of wedge type rail clamp.

  • PDF

Locker의 물림각과 쐐기형 레일클램프의 압착력에 관한 실험적 고찰 (A Experimental Analysis on the Relationship between the Angle of a Locker and the Clamping Force of Wedge Type Rail Clamp)

  • 한동섭;심재준;한근조;이권희
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.247-252
    • /
    • 2005
  • 쐐기형 레일클램프는 작은 초기 압착력으로 레일을 압착한 후 풍속이 증가함에 따라 쐐기작용에 의해 압착력이 증가하여 레일을 강하게 압착하는 구조를 가지고 있다. 쐐기형 레일클램프를 설계하기 위해서는 쐐기작용을 위한 적정 쐐기각과 초기압착력 발휘를 위한 적정 Locker의 물림각을 결정해야 한다. 적정 쐐기각에 관한 연구는 이미 수행되었으며, 본 연구에서는 Locker의 적정 물림각을 설정하기 위하여 이전 연구를 바탕으로 $10^{\circ}$의 쐐기각을 갖는 레일클램프에서 Locker의 물림각과 Jaw pad의 압착력 사이의 상관관계를 실험적 분석을 통해 살펴보았다. 레일클램프의 초기 압착력은 Locker의 물림각에 의해 결정되므로 3, 4, 5, $6^{\circ}$의 4가지 Locker의 물림각에 따른 Locker의 물림력을 압력게이지를 이용하여 측정한 후 Jaw pad의 압착력을 산출하여 유한요소해석결과와 비교하였다.

  • PDF

컨테이너 크레인용 쐐기형 레일 클램프의 쐐기각에 대한연구 (Study on the Wedge Angle of Wedge Type Rail Clamp for Container Crane)

  • 한근조;이호;심재준;한동섭;안찬우;전영환
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.119-126
    • /
    • 2004
  • In this paper, we design a wedge type rail clamp which can protect container crane from a sudden strong blast with constant clamping force regardless of the operating period. When we design wedge type rail clamp, it is important to determine the angle of wedge and analyze a contact condition of roller and wedge so that we might develop a wedge type rail clamp for parking devices of port cargo working system with variable capacity. Therefore, this paper suggests a process to decide wedge angles within feasible range which could be obtained using load analysis and FEA of wedge type rail clamp