• Title/Summary/Keyword: Cl-containing waste

Search Result 51, Processing Time 0.024 seconds

Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering (고상소결에 의한 방사성 희토류산화물의 고화)

  • Ahn, Byung-Gil;Park, Hwan-Seo;Kim, Hwan-Young;Lee, Han-Soo;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare eath oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix(ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilzed with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

Recovery of Zirconium and Removal of Uranium from Alloy Waste by Chloride Volatilization Method

  • Sato, Nobuaki;Minami, Ryosuke;Fujino, Takeo;Matsuda, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.179-182
    • /
    • 2001
  • The chloride volatilization method for the recovery of zirconium and removal of uranium from zirconium containing metallic wastes formed in spent fuel reprocessing was studied using the simulated alloy waste, i.e. the mixture of Zr foil and UO$_2$/U$_3$O$_{8}$ powder. When the simulated waste was heated to react with chlorine gas at 350- l00$0^{\circ}C$, the zirconium metal changed to volatile ZrCl$_4$showing high volatility ratio (Vzr) of 99%. The amount of volatilized uranium increases at higher temperatures causing lowering of decontamination factor (DF) of uranium. This is thought to be caused by the chlorination of UO$_2$ with ZrCl$_4$vapor. The highest DF value of 12.5 was obtained when the reaction temperature was 35$0^{\circ}C$. Addition of 10 vol.% oxygen gas into chlorine gas was effective for suppressing the volatilization of uranium, while the volatilization ratio of zirconium was decreased to 68% with the addition of 20 vol.% oxygen. In the case of the mixture of Zr foil and U$_3$O$_{8}$, the V value of uranium showed minimum (44%) at 40$0^{\circ}C$ with chlorine gas giving the highest DF value 24.3. When the 10 vol.% oxygen was added to chlorine gas, the V value of zirconium decreased to 82% at $600^{\circ}C$, but almost all the uranium volatilized (Vu=99%), which may be caused by the formation of volatile uranium chlorides under oxidative atmosphere.ere.

  • PDF

Removal of Uranium Ions in Lagoon Waste by Electrosorption

  • Jung, Chong-Hun;Won, Hui-Jun;Park, Wang-Kyu;Kim, Gye-Nam;Oh, Won-Zin;Hwang, Sung-Tai;Park, Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.701-706
    • /
    • 2003
  • A study on the electrosorption of U(VI) onto porous activated carbon fibers (ACFs) was performed to treat uranium-containing lagoon sludge. Effective U(Ⅵ) removal is accomplished when a negative potential is applied to the activated carbon fiber(ACF) electrode. For a feed concentration of 100mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1mg/L. The adsorbed uranium could be deserted from the ACF by passing a 1M NaCl solution through the cell and applying a positive potential onto the electrode. The regeneration of ACF from the cycling experiments was confirmed.

  • PDF

The Effect of Chloride Additives and pH on Direct Aqueous Carbonation of Cement Paste (시멘트 풀의 직접수성탄산화에서 Chloride 첨가제와 pH의 영향)

  • Lee, Jinhyun;Hwang, Jinyeon;Lee, Hyomin;Son, Byeongseo;Oh, Jiho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2015
  • Recently, carbon capture and storage (CCS) techniques have been globally studied. This study was conducted to use waste cement powder as an efficient raw material of mineral carbonation for $CO_2$ sequestration. Direct aqueous carbonation experiment was conducted with injecting pure $CO_2$ gas (99.9%) to a reactor containing $200m{\ell}$ reacting solution and the pulverized cement paste (W:C = 6:4) having particle size less than 0.15 mm. The effects of two additives (NaCl, $MgCl_2$) in carbonation were analyzed. The characteristics of carbonate minerals and carbonation process according to the type of additives and pH change were carefully evaluated. pH of reacting solution was gradually decreased with injecting $CO_2$ gas. $Ca^{2+}$ ion concentration in $MgCl_2$ containing solution was continuously decreased. In none $MgCl_2$ solution, however, $Ca^{2+}$ ion concentration was increased again as pH decreased. This is probably due to the dissolution of newly formed carbonate mineral in low pH solution. XRD analysis indicates that calcite is dominant carbonate mineral in none $MgCl_2$ solution whereas aragonite is dominant in $MgCl_2$ containing solution. Unstable vaterite formed in early stage of experiment was transformed to well crystallized calcite with decreasing pH in the absence of $MgCl_2$ additives. In the presence of $MgCl_2$ additives, the content of aragonite was increased with decreasing pH whereas the content of calite was decreased.

Synthesis of Needle-Like Aragonite Crystals in the Presence of Magnesium Chloride and Their Application in Papermaking

  • Hu, Zeshan;Shao, Minghao;Li, Huayang;Cai, Qiang;Zhong, Chenghua;Xianming, Zhang;Deng, Yulin
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.315-326
    • /
    • 2009
  • PCC (precipitated calcium carbonate) and ground calcium carbonate have been widely used in alkaline papermaking. Unfortunately, although increasing filler level in papers can improve the paper properties such as brightness, opacity, stiffness gloss, smoothness, porosity, and printability, as well as decrease cost, some strength of the paper is negatively affected. In this research, needle-like aragonite was synthesized using $Ca(OH)_2$ and $CO_2$ as reactants in the presence of $MgCl_2$ and characterized with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The physical and optical properties of the paper handsheets containing these needle-like aragonite fillers were evaluated. Results indicated that tensile strength, Z-direction tensile strength and folding endurance of the paper were improved by the needle-like aragonite crystals compared to the paper using commercial PCC (precipitated calcium carbonate) as filler. The stiffness of the paper handsheet on the machine direction was increased, but no evident difference in the cross direction was found. The improvement of paper strength mainly resulted from the twining effect between the aragonite whiskers and paper fibers. The optical properties of the paper were slightly decreased with the use of the needle-like aragonites compared to commercial PCC. These results suggest that paper cost can be decreased by increasing the content of needle-like aragonite filler while paper strength will not be decreased compared to PCC filler.

Proposal of a prototype plant based on the exfoliation process for the treatment of irradiated graphite

  • Pozzetto, Silvia;Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guidi, Giambattista
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.797-801
    • /
    • 2020
  • Most of irradiated graphite that should be disposed comes from moderators and reflectors of nuclear power plants. The quantity of irradiated graphite could be higher in the future if high-temperature reactors (HTRs) will be deployed. In this case noteworthy quantities of fuel pebbles containing semi-graphitic carbonaceous material should be added to the already existing 250,000 tons of irradiated graphite. Industry graphite is largely used in industrial applications for its high thermal and electrical conductivity and thermal and chemical resistance, making it a valuable material. Irradiated graphite constitutes a waste management challenge owing to the presence of long-lived radionuclides, such as 14C and 36Cl. In the ENEA Nuclear Material Characterization Laboratory it has been successfully designed a procedure based on the exfoliation process organic solvent assisted, with the purpose of investigate the possibility of achieving graphite significantly less toxic that could be recycled for other purpose [1]. The objective of this paper is to evaluate the possibility of the scalability from laboratory to industrial dimensions of the exfoliation process and provide the prototype of a chemical plant for the treatment of irradiated graphite.

A Study on Wasteform Properties of Spent Salt Treated with Zeolite and SAP (염화염을 제올라이트와 SAP로 처리한 고화체의 특성연구)

  • Kim, Hwan-Young;Park, Hwan-Seo;Kang, Kweon-Ho;Ahn, Byung-Gil;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • This paper investigated the characteristics of wasteform containing a spent zeolite used as a separating agent of FPs for recycling LiCl waste which would be generated from pyrochemical process of spent PWR fuel. In this study, a conventional borosilicate and Ca-rich glass were used as a consolidating agent for spent zeolite and it's mixing ratio was changed in the range, $25{\sim}35wt%$. The leach rates of Cs and Sr had about $0.1{\sim}0.01g/m^2day$ and $0.001{\sim}0.0001g/m^2day$, respectively. The leach resistance of Cs increased with amount of SAP and it showed about 10 times higher in the Ca-rich glass wasteform than in the conventional borosilciate glass wasteform. The compressive strength of wasteform was affected with the amount of glass. Thermal expansion rate of containing 30wt% glass has relatively lower than others. Also, the melting temperature was little changed in given mixing ratio of glass.

Regeneration Methods for Iron Powers in the Treatment of the Waste FeCl3 Etching Solution (엣칭용 염화철폐액의 처리에서 미반응철의 재생방법)

  • Park, Chan-Woo;Jeung, Woo-Won;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.595-601
    • /
    • 1997
  • The regeneration of the iron powders in the treatment of $FeCl_3$ etching solution containing nickel by ball-mill and ultrasonic treatments has been studied. When the unreacted iron powders were treated twice, the removal efficiency of nickel was 94.0% for the ball-mill treatment and 82.1% for the ultrasonic treatment. But the removal efficiency of nickel was 40.0% for the untreated iron powders. As the treatment time was increased, the particle size of iron powders was decreased for ball-mill treatment and almost not changed for ultrasonic treatment.

  • PDF

The Development of U-recovery by Continuous Electrorefining (연속식 전해정련에 의한 우라늄 회수기술 개발)

  • Kim, Jeong-Guk;Park, Sung-Bin;Hwang, Sung-Chan;Kang, Young-Ho;Lee, Sung-Jai;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The electrorefining process, one of main processes which are composed of pyroprocess to recover the useful elements from spent fuel, and the domestic development of electrorefiner have been reviewed. The electrorefiner is composed of an anode basket containing reduced spent fuel such as uranium, transuranic and rare earth elements, and a solid cathode, which are in LiCl-KCl eutectic electrolyte. Oxidation (dissolution) reaction occurs on the anode and a pure uranium is electrochemically reduced (deposited) on the solid cathode. By application of graphite cathode, which has a self-scrapping characteristics for the uranium deposits, and a recovery of the fallen deposits by a screw conveyer, a high-throughput continuous electrorefiner with a capacity of 20 kgU/day has been developed.

Efficiency Evaluation of Transition Metal-Based Additives for Efficient Thermochemical Conversion of Coffee Waste (커피찌꺼기의 효율적인 열화학 전환을 위한 전이 금속 기반 첨가제 효율 평가)

  • Cho, Dong-Wan;Jang, Jeong-Yun;Kim, Sunjoon;Yim, Gil-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • This work examined the effect of mixing transition metal-based additives [FeCl3, Fe-containing paper mill sludge (PMS), CoCl2·H2O, ZrO2, and α-Fe2O3] on the thermochemical conversion of coffee waste (CW) in carbon dioxide-assisted pyrolysis process. Compared to the generation amounts of syngas (0.7 mole% H2 & 3.0 mole% CO) at 700℃ from single pyrolysis of CW, co-pyrolysis in the presence of Fe- or Zr-based additives resulted in the enhanced production of syngas, with the measured concentrations of H2 and CO ranging 1.1-3.4 mole% and 4.6-13.2 mole% at the same temperature, respectively. In addition, α-Fe2O3 biochar possessed the adsorption capacity of As(V) (19.3 mg g-1) comparable to that of ZrO2-biochar (21.2 mg g-1). In conclusion, solid-type Fe-based additive can be highly considered as an efficient catalyst to simultaneously produce syngas (H2 & CO) as fuel energy resource and metal-biochar as sorbent.