• Title/Summary/Keyword: Civil Planning

Search Result 1,037, Processing Time 0.028 seconds

Developing an Optimization Model and Program for Planning the Earthwork Based Upon Transportation Theory (수송모형이론에 의한 토공 운반 최적화 모델 및 프로그램 개발)

  • Lee, Seunghak;Son, Jaeho;Pyeon, Jaeho;Lee, Seunghyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.1
    • /
    • pp.101-109
    • /
    • 2016
  • During road construction, minimizing haul and return distances as well as keeping a balance between cut and fill quantities are two of the key tasks for earthmoving operation planning. The result of the earthwork planning has a significant impact on the construction cost and duration. Although there have been research efforts regarding optimized earthwork planning using linear programming, the current practice of selecting earthwork planning methods typically depends on a field manager's intuitive and/or experimental knowledge. Furthermore, there is no system considering earthwork influential field factors including the transportation distance, the earthwork quantity, and the recycling ratio of earth volume. Therefore, this research focuses on the development of such a model for planning the optimized earthwork to increase the efficiency of a road construction. The proposed model is developed based upon the transportation problem method which is a part of Linear Programming. The application result of optimization model on a case study shows that the duration and cost for earthwork ha sbeen reduced approximately 19% and 11% respectively

Management of urban smart systems

  • De Lotto, Roberto
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.333-338
    • /
    • 2022
  • Planning activity is complex process assuming the term "complexity" as a group of elements interconnected each other. The common knowledge about city planning underlines its main aim as: figuring the present, imaging the future, governing every day the territory and the way people use and live it at different scales. When considering the strength of technological opportunities and the spreading of ICT and IoT devices within everyday life, that mean within the life of cities, the complex nature of the urban system increases with the intensification of information and their connections. Recent orientations about urban and regional planning try to carry the discipline to a more flexible approach in respect to the hyperdeterminant role of direct technical applications. This passage is a fundamental aspect considering the faster and faster modifications of social and economic assets at the global and local scale. At the same time, the "environment question" became more and more relevant at the worldwide scale within the 2015 UN 2030 Agenda for Sustainable Development. Another relevant aspect about the recent urban planning orientations regards the role of the different subjects that are part of the planning process. Approaching the government of smart cities means to define how every subject, with different roles (public or private), could enrich the knowledge of the functioning of the "urban machine" and the awareness of participation of people and city users in the quality of urban life. In the paper author starts defining recent approaches in urban planning, then the nature of the city as a complex system is analyzed from the point of view of planners and of the different subjects that act in the city. Then the smart city is introduced as a further level of complexity and finally author propose the basic element of a Planning Support System.

ACTIVITY-BASED STRATEGIC WORK PLANNING AND CREW MANAGEMENT IN CONSTRUCTION: UTILIZATION OF CREWS WITH MULTIPLE SKILL LEVELS

  • Sungjoo Hwang;Moonseo Park;Hyun-Soo Lee;SangHyun Lee;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.359-366
    • /
    • 2013
  • Although many research efforts have been conducted to address the effect of crew members' work skills (e.g., technical and planning skills) on work performance (e.g., work duration and quality) in construction projects, the relationship between skill and performance has generated a great deal of controversy in the field of management (Inkpen and Crossan 1995). This controversy can lead to under- or over-estimations of the overall project schedule, and can make it difficult for project managers to implement appropriate managerial policies for enhancing project performance. To address this issue, the following aspects need to be considered: (a) work performances are determined not only by individual-level work skill but also by the group-level work skill affected by work team members, each member's role, and any working behavior pattern; (b) work planning has significant effects on to what extent work skill enhances performance; and (c) different types of activities in construction require different types of work, skill, and team composition. This research, therefore, develops a system dynamics (SD) model to analyze the effects of both individual-and group-level (i.e., multi-level) skill on performances by utilizing the advantages of SD in capturing a feedback process and state changes, especially in human factors (e.g., attitude, ability, and behavior). The model incorporates: (a) a multi-level skill evolution and relevant behavior development mechanism within a work group; (b) the interaction among work planning, a crew's skill-learning, skill manifestation, and performances; and (c) the different work characteristics of each activity. This model can be utilized to implement appropriate work planning (e.g., work scope and work schedule) and crew management policies (e.g., work team composition and decision of each worker's role) with an awareness of crew's skill and work performance. Understanding the different characteristics of each activity can also support project managers in applying strategic work planning and crew management for a corresponding activity, which may enhance each activity's performance, as well as the overall project performance.

  • PDF

A Daily Production Planning Method for Improving the Production Linearity of Semiconductor Fabs (반도체 Fab의 생산선형성 향상을 위한 일간생산계획 방법론)

  • Jeong, Keun-Chae;Park, Moon-Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.275-286
    • /
    • 2015
  • In this paper, we propose a practical method for setting up a daily production plan which can operate semiconductor fabrication factories more stably and linearly by determining work in process (WIP) targets and movement targets. We first adjust cycle times of the operations to satisfy the monthly production plan. Second, work in process (WIP) targets are determined to control the production progress of operations: earliness and tardiness. Third, movement targets are determined to reduce cumulated differences between WIP targets and actual WIPs. Finally, the determined movement targets are modified through a simulation model which considers capacities of the equipments and allocations of the WIPs in the fab. The proposed daily production planning method can be easily adapted to the memory semiconductor fabs because the method is very simple and has straightforward logics. Although the proposed method is simple and straightforward, the power of the method is very strong. Results from the shop floor in past few periods showed that the proposed methodology gives a good performance with respect to the productivity, workload balance, and machine utilization. We can expect that the proposed daily production planning method will be used as a useful tool for operating semiconductor fabrication factories more efficiently and effectively.

Study on Application Plan of Intelligent National Geospatial Data for Review of Unexecuted Urban Planning Facilities Infrastructure in Long-term (장기 미집행 도시계획시설의 재검토를 위한 지능형 국토정보의 활용방안 연구)

  • Choi, Seung Yong;Lee, Hyun Jik;Yang, Seung Ryong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.125-134
    • /
    • 2013
  • Since 2012, the local autonomous governments, under the recommendations regarding cancellation of local committees directing overly-unexecuted urban planning facilities, have tried to prove validity of such facilities. Factors such as specific standards of cancelation process, will execute policies, diversification of local conditions, connectivity to nearby facilities and possible arise of civil complaints, however, all hinder overly-unexecuted urban planning facilities from getting revitalized. Considering that these unexecuted facilities that local governments have to manage increase in number every year, the burden continuously increases for the governments due to the difficulty of setting aside budget for performing validity checks on such facilities. This research aims to analyze the criteria regarding efficient and systematic method on confirming validity of overly-unexecuted urban planning facilities, to establish into several different processes according to defined categories, and to objectify and quantify such standards. Also, using intelligent spatial information such as digital map, LiDAR data and ortho-images, spatial information analysis method suitable for reassessment was chosen and applied to execute validity analysis regarding overly-unexecuted urban planning facilities.

Effect of elevated atmospheric carbon dioxide on the allelopathic potential of common ragweed

  • Bae, Jichul;Byun, Chaeho;Ahn, Yun Gyong;Choi, Jung Hyun;Lee, Dowon;Kang, Hojeong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.212-218
    • /
    • 2019
  • Background: Allelopathy has been suggested as one potential mechanism facilitating the successful colonisation and expansion of invasive plants. The impacts of the ongoing elevation in atmospheric carbon dioxide (CO2) on the production of allelochemicals by invasive species are of great importance because they play a potential role in promoting biological invasion at the global scale. Common ragweed (Ambrosia artemisiifolia var. elatior), one of the most notorious invasive exotic plant species, was used to assess changes in foliar mono- and sesquiterpene production in response to CO2 elevation (389.12 ± 2.55 vs. 802.08 ± 2.69 ppm). Results: The plant growth of common ragweed significantly increased in elevated CO2. The major monoterpenes in the essential oil extracted from common ragweed leaves were β-myrcene, DL-limonene and 1,3,6-octatriene, and the major sesquiterpenes were β-caryophyllene and germacrene-D. The concentrations of 1,3,6-octatriene (258%) and β-caryophyllene (421%) significantly increased with CO2 elevation. Conclusions: These findings improve our understanding of how allelochemicals in common ragweed respond to CO2 elevation.

Experimental approach to evaluate weathering condition of granite using electrical resistivity

  • Oh, Tae-Min;Cho, Gye-Chun;Son, Thai An;Ryu, Hee-Hwan;Lee, Changho
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.675-685
    • /
    • 2015
  • Weathering is the breaking/cutting down process of rocks due to physical and chemical processes in natural as well as artificial environment including $CO_2$ injection for storage in the sediment, or natural resource recovery process. This study suggests an alternative method to estimate the degree of weathering for granites. A series of laboratory and field experiments are performed to measure electrical resistivities on various rock samples experienced different degrees of weathering and their residual soils under different saturation conditions. It is found that the normalized electrical resistivity increases with a decrease in water absorption and the saturation. Simple boundaries are suggested to identify the weathering degree of granites, based on limited data. Field test results for three sites confirm that the suggested method could be estimated well the degree of weathering of granites compared with the other methods suggested previously. Although further research is required, this study suggests that an electrical resistivity could be an effective approach to estimate the degree of weathering of granites compared with the other methods suggested previously.

An Estimation Model of Historical Cost Using BIM Library for Road Project (도로분야 BIM 라이브러리를 활용한 실적공사비 산정모델 구축)

  • Moon, HyounSeok;Ju, KiBeom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.431-442
    • /
    • 2015
  • Currently, a BIM-based quantity takeoff (QTO) system is mainly focused on architectural projects. To perform this, diverse quantity takeoff methods such as an object-based automatic quantity takeoff, manual quantity and base functions of calculation have widely been utilizing. However, since BIM library for road projects includes structural elements associated with alignment, it is necessary to establish cost estimation system interlocked with historical cost using 3D library by each unit length. Accordingly, the aim of this study is to develop cost estimation model with using a historical cost approach so that it can be utilized in construction planning based on the BIM library for road projects. For this, based on the BIM library for road, the standardized quantity is estimated, and a process for calculating historical cost and a verification model with a 5D simulation was developed by mapping a WBS code with each BIM library object. This can be applied during the approximate cost estimation process in a project planning and an initial design phase for road projects. Besides, it is expected that these results will be utilized in constructing an optimal historical cost estimation process for project libraries.

A Spread Sheet Model for a Long Range Water Supply Planning (장기 용수 공급계획 수립을 위한 스프레드 쉬트 모형)

  • Kim, Sheung Kown
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.153-162
    • /
    • 1992
  • A mathematical model for a long range water supply planning is developed as a dynamic capacitated facility location problem, in which operating costs and two types of fixed costs are considered. The fixed costs are for water supply systems such as dams and reservoirs and for water conveyance systems of waterways or conduits from each water supply points. A spreadsheet model is developed to support the efficiency of user interface and to implement a heuristic solution procedure. The proposed solution procedure utilizes SOLVER tool and it has been applied to a system with fictitious data but with reality and applicability in mind. As a result of the mathematical analysis, not only the most economic construction timings of surface water facilities and distribution systems but also the most economical water supply operating patterns are identified.

  • PDF

Quantification of Uncertainty Associated with Environmental Site Assessments and Its Reduction Approaches (부지 오염도 평가시 불확실성 정량화 및 저감방안)

  • Kim, Geonha;Back, JongHwan;Song, Yong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Uncertainty associated with a sampling method is very high in evaluating the degree of site contamination; therefore, such uncertainty affects the reliability of precise investigation and remediation verification. In particular, in evaluating a site for a small-sized filling station, underground utilities, such as connection pipes and oil storage tanks, make grid-unit sampling impossible and the resulting increase in uncertainty is inevitable. Accordingly, this study quantified the uncertainty related to the evaluation of the degree of contamination by total petroleum hydrocarbon and by benzene, toluene, ethylene, and xylene. When planning a grid aimed at detecting a hot spot, major factors that influence the increase in uncertainty include grid interval and the size and shape of the hot spot. The current guideline for soil sampling prescribes that the grid interval increase in proportion to the area of the evaluated site, but this heightens the possibility that a hot spot will not be detected. In evaluating a site, therefore, it is crucial to estimate the size and shape of the hot spot in advance and to establish a sampling plan considering a diversity of scenarios.