• Title/Summary/Keyword: Civil Engineering Site

Search Result 1,926, Processing Time 0.034 seconds

Analysis of the under Pavement Cavity Growth Rate using Multi-Channel GPR Equipment (멀티채널 GPR 장비를 이용한 도로하부 공동의 크기 변화 분석)

  • Park, Jeong Jun;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.60-69
    • /
    • 2020
  • Purpose: Cavity growth process monitoring is to periodically monitor changes in common size and topography for general and observational grades to predict the rate of common growth. The purpose of this study is to establish a systematic cavity management plan by evaluating the general and observational class community in a non-destructive method. Method: Using GPR exploration equipment, the acquired surface image and the surrounding status image are analyzed in the GPR probe radargram in depth, profile, and cross section of the location. The exact location is selected using the distance and surrounding markings shown on the road surface of the initial detection cavity, and the test cavity is analyzed by calling the radar at the corresponding location. Result: As a result of monitoring tests conducted at a cavity 30 sites of general and observation grade, nine sites have been recovered. Changes in scale were seen in 21 cavity locations, and changes in size and grade occurred in 13 locations. Conclusion: The under road cavity is caused by various causes such as damage to the burial site, poor construction, soil leakage caused by groundwater leakage, waste and ground vibration. Among them, indirect factors could infer the effects of groundwater and localized rainfall.

A Study on Variation in Annual Water Balance (도시화에 따른 수문기후변화 I (연 물수지 변화 분석))

  • Rim, Chang-Soo;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.555-570
    • /
    • 2007
  • The effects of climatic changes owing to urbanization on annual water balance have been studied. In this study, 56 meteorological stations including Seoul metropolis in South Korea have been selected, and the area of study site is $314\;km^2$. The meteorological station is centrally located in the study area with a 10 km radius. Land use status of study area was examined to estimate the urbanization extent, so that annual actual evapotranspiration could be estimated. Annual runoff was estimated by annual water balance approach using the estimated annual actual evapotranspiration and measured annual precipitation. Annual actual evapotranspiration was estimated by applying experimental equation suggested by Zhang et al, (2001) which was evaluated from 250 watersheds all over the world. Study results show that reference evapotranspiration is tending upwards due to urbanization; therefore, it seems that climatic change due to urbanization may increase the amount of annual actual evapotranspiration. However, the increase of residential area due to urbanization in study area may decrease the amount of annual actual evapotranspiration. The study results indicate that urbanization effect on annual trend of precipitation was not significant. In urban area, annual runoff is directly affected by annual precipitation, and compared with annual precipitation, annual variation of actual evapotranspiration was not significant even though it was estimated by using annual precipitation. It seems that the effect of urbanization on annual actual evapotranspiration does not influence on annual runoff significantly, and that urbanization effect on annual runoff Is not significant.

Urbanization Effects on Reference Evapotranspiration (도시화에 따른 수문기후변화 II (도시화가 기준 증발산량에 미치는 영향))

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.571-583
    • /
    • 2007
  • The effects of climatic changes owing to urbanization, geographical and topographical conditions on Penman-Monteith reference evapotranspiration, and energy and aerodynamic terms of Penman-Monteith reference evapotranspiration have been studied. In this study, 56 climatological stations including the Seoul metropolis in South Korea have been selected, and the area of study site was set at $314\;km^2$. The climatological station is centrally located In the study area with a 10 km radius. The geographical and topographical characteristics of these sites were examined using GIS analysis. Land use status of the study area was also examined to estimate the extent of urbanization. The study results indicated that the variation of reference evapotranspiration rate is closely related to urbanization in most climatological stations. The level of change in reference evapotranspiration was higher in areas with higher urbanization rates. The change in reference evapotranspiration appears to be caused by temperature rises following heat island phenomena due to urbanization, and by the decrease in humidity, wind speed and sunshine duration due to the Increase in residential areas in urban districts. Especially, the humidity decrease causes a significant decrease in evapotranspiration rate. The study results showed that climatic change due to urbanization and proximity to the coast had the greatest effect on reference evapotranspiration.

Economic Effects of Changes in Spatial Accessibility on Regional Tourism Expenditure Structure (공간적 접근성 변화가 지역관광지출구조에 미치는 경제적 효과 분석)

  • Kwon, Young-Hyun;Shin, Hye-Won
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.135-149
    • /
    • 2019
  • This article analyzed economic effects of changes in spatial accessibility on regional touruism expenditure structure resulting from highway investments on Gangwon province, Korea. The Seemingly Unrelated Regress(SUR) model is applied to analyze the structure of change in tourism expenditure of Gangwon Province, and the competition and complementary relationship of tourist demand were analyzed among 18 counties in Gangwon by Dendrinos-Sonis method. The spatial accessibility has a significant effect on the increase in amount of tourist expenditure, but by 1% increase in the accessibility resulted in a reduction of length of stay -0.18% and travel costs -0.34% by respectively. The most powerful variable for improving the on-site economy is the tourist service establishment, which increases one unit, the amount of tourist expenditure increased by 3.6%. Moreover, the competition and supplemental relationship of tourism demands in Gangwon was decided by the conditions under which traffic flow with passing occurred, such as inland or ocean-typed travel attractions, adjacent or remote regions to the highway. The limitations of this study were not able to use raw data of tourism expenditures before and after the opening the highway due to the restriction of priority data, and further research on the appropriate level of spatial accessibility for the regional economy is needed.

Characteristics of Heavy Metals Uptake by Plants: Based on Plant Species, Types of Heavy Metals, and Initial Metal Concentration in Soil (식물정화공법에서 다양한 중금속의 식물체로의 흡수 및 축적 특성 비교: 식물체 종류, 중금속 종류, 토양 내 중금속 농도를 중심으로)

  • Jeong, Seul-Ki;Kim, Tae-Sung;Moon, Hee-Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.61-68
    • /
    • 2010
  • Phytoextraction, one type of phytoremediation processes, has been widely used in the removal of heavy metals from polluted soil. This paper reviewed literature on metal uptake by plants and characterized the metal uptake by types of metals (Zn, Cu, Pb, Cd, and As), plant species, initial metal concentrations in soil and the distribution of metals in different parts of plants. The potential of metal accumulation and transport by plants was closely related to plants species, types of metals, and initial metal concentrations in soil. The plants belonging to Brassicaceae, Solanaceae, Poaceae, and Convolvulaceae families have shown the high potential capacity of Cd accumulation. The Gentianaceae, Euphorbiaceae, and Polygonaceae families have exhibited relatively high Pb uptake potential while the Pteridaceae and Cyperaceae families have shown relatively high Zn uptake potential. The Pteridaceae family could uptake a remarkably high amount of As compared with other plant families. The potential metal accumulation per plant biomass has increased with increasing initial metal concentration in soil up to a certain level and then decreased for Cd and Zn. For As, only Pteris vittata had a linear relationship between initial concentration in soil and potential of metal uptake. However, a meaningful relationship for Pb was not found in this study. Generally, the plants having high metal uptake potential for Cd or Pb mainly accumulated the metal in their roots. However, the Euphorbiaceae family has accumulated more than 80% of Pb in shoot. Zn has evenly accumulated in roots and stems except for the plants belonging to the Polygonaceae and Rosaceae families which accumulated Zn in their leaves. The Pteridaceae family has accumulated a higher amount of As in leaves than roots. The types of metals, plant species, and initial metal concentration in soil influence the metal uptake by plants. It is important to select site-specific plant species for effective removal of metals in soil. Therefore, this study may provide useful and beneficial information on metal accumulation by plants for the in situ phytoremediation.

A Study of Prestressed Concrete Pile Stiffness for Structural Analysis of Condominium Remodeling with Vertical Story Extension (수직증축형 공동주택 리모델링 구조해석을 위한 PC말뚝 강성에 관한 연구)

  • Choi, Changho;Lee, Hyunjee;Choi, Kisun;You, Youngchan;Kim, Jinyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.81-92
    • /
    • 2017
  • According to the revision of the Housing Act in 2013, it has been possible to carry out an apartment remodeling project involving two to three floor vertical extension. The remodeling project with vertical extension requires foundation reinforcement because structural safety due to additional load and enhanced seismic criteria must be met. In this case, structural analysis is performed to analyze the load distributed to existing PC pile and reinforced additional pile. The vertical stiffness ($K_v$) of the pile is required for structural analysis, but the research on the 20~30 year old PC pile stiffness is very limited. In this paper, the stiffness of the PC pile in accordance with the change of diameter and length was analyzed by examining the results of 38 field pile load tests performed during the construction of the apartments in the 1990's. As a result of the analysis, the pile stiffness decreases with the increase of the length-diameter ratio (L/D). In addition, the results of on-site pile load test are compared with the coefficient 'a' for estimating pile stiffness proposed in Korea Highway Bridge Design Standard (2008) and the Pile Foundation Design Guideline of Korea Railroad Corporation (2012). It shows that 'a' obtained through the estimation of the literature is very similar to the field test results in the range of 10

Parameter Study of Track Deformation Analysis by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 지하철 궤도 변형 해석을 위한 매개변수 연구)

  • Choi, Jung-Youl;Cho, Soo-Il;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.669-675
    • /
    • 2020
  • In this study, 3D analysis was compared in evaluating the track deformation of subway structures during adjacent excavation. For the 3D analysis model, the boundary conditions of the tunnel model and the application level of the ground water were analyzed as variables. As the result of the effects of track irregularity using the 3D model, the analysis model considering the site ground water level instead of the design values and changing the constraint of the boundary condition is more reasonable. In addition, the influence of track irregularity due to the boundary condition and load condition of the analytical model is more obvious in the factors directly affected by the longitudinal relative displacement of the rail, such as alignment, cross level and gauge irregularity. Therefore, the evaluation on track stability according to adjacent excavation work was appropriate to analysed the longitudinal deformation of the track by using 3D model that could be investigate the deformation of rail. In addition, the boundary condition and load condition(ground water level) of the numerical model was important for accurate analysis results.

Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression (Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역 빈도분석)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.325-340
    • /
    • 2008
  • This study employs Bayesian multiple regression analysis using the ordinary least squares method for regional low flow frequency analysis. The parameter estimates using the Bayesian multiple regression analysis were compared to conventional analysis using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian analysis at each return period are not significantly different. However, the difference between upper and lower limits is remarkably reduced using the Bayesian multiple regression. Therefore, from the point of view of uncertainty analysis, Bayesian multiple regression analysis is more attractive than the conventional method based on a t-distribution because the low flow sample size at the site of interest is typically insufficient to perform low flow frequency analysis. Also, we performed low flow prediction, including confidence interval, at two ungauged catchments in the Nakdong River basin using the developed Bayesian multiple regression model. The Bayesian prediction proves effective to infer the low flow characteristic at the ungauged catchment.

A point-scale gap filling of the flux-tower data using the artificial neural network (인공신경망 기법을 이용한 청미천 유역 Flux tower 결측치 보정)

  • Jeon, Hyunho;Baik, Jongjin;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.929-938
    • /
    • 2020
  • In this study, we estimated missing evapotranspiration (ET) data at a eddy-covariance flux tower in the Cheongmicheon farmland site using the Artificial Neural Network (ANN). The ANN showed excellent performance in numerical analysis and is expanding in various fields. To evaluate the performance the ANN-based gap-filling, ET was calculated using the existing gap-filling methods of Mean Diagnostic Variation (MDV) and Food and Aggregation Organization Penman-Monteith (FAO-PM). Then ET was evaluated by time series method and statistical analysis (coefficient of determination, index of agreement (IOA), root mean squared error (RMSE) and mean absolute error (MAE). For the validation of each gap-filling model, we used 30 minutes of data in 2015. Of the 121 missing values, the ANN method showed the best performance by supplementing 70, 53 and 84 missing values, respectively, in the order of MDV, FAO-PM, and ANN methods. Analysis of the coefficient of determination (MDV, FAO-PM, and ANN methods followed by 0.673, 0.784, and 0.841, respectively.) and the IOA (The MDV, FAO-PM, and ANN methods followed by 0.899, 0.890, and 0.951 respectively.) indicated that, all three methods were highly correlated and considered to be fully utilized, and among them, ANN models showed the highest performance and suitability. Based on this study, it could be used more appropriately in the study of gap-filling method of flux tower data using machine learning method.

Characteristics of Water Quality and Evaluation of Eutrophication for Reservoirs in Kunsan (군산지역 저수지의 수질특성 및 부영양화 평가)

  • Kim, Jong-Gu;O, Seung-Chul
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.357-367
    • /
    • 2007
  • Recently, eutrophication or lake and reservoir has become serious problem to man who want use that water for several purpose. In order to solve the eutrophication problem, the trophic state of that eutrophic lake and reservoir should be measured properly. For the purpose of this, various method to indicate the trophic state of lake and reservoir was developed by many researchers. This research was conducted to evaluate characteristics and eutrophication of water qualitymfor small scale reservoir in Kunsan. On-site investigation to 5 reservoirs and laboratory experiment were carried out during four seasons from November, 2003 to July, 2004. Twelve items measured field ana a laboratory. Measured data was analyzed to quantitative method by multivariate approach and eutrophication index. The result is summarized as following. 1) Showing the characteristics of water quality for reservoir in Kunsan, Okgu reservoir and Oknua reservoir was exceeded 4 grades of agricultural water standard in TP, TN and COD. This means that eutrophication was gone much, therefore, water-purity control of reservoir need. While, Mije reservoir that is used to Kunsan citizens' recreation was good in water quality. But, water quality exceeded 4 grades of agricultural Dater standard sometimes. 2) As a results of correlation analysis between variables of water qualify, Interrelation between variables which is connected with eutrophication was expressed good relationship as above 6.000 in correlation coefficients. The correlation coefficient(r) between COD and chlorophyll-a, total phosphorus and chlorophyll-a, total nitrogen and chlorophyll-a were 0.750, 0.720 and 0.600 respectively. Therefore, Change of water quality can grasp according to eutrophication progress degree. 3) If do evaluate to eutrophication by quantitative method which is proposed by OECD, US-EPA and Forsberg & Ryding, in the case of chlorophyll a, Okgu, Oknua and Daewi reservoir was eutrophic state and Mije and Geumgul reservoir was mesotrophic state. But, estimation by TN and TP showed highly eutrophic state (hypereutrophic) in all reservoirs. 4) If do evaluate by eutrophication index which is Carlson's TSI, revised carlson TSI and Walker's index, in the case of chlorophyll a, TSI values of Okgu, Oknua and Daewi reservoir is eutrophic state more than 50 and Mije and Geumgul reservoir was mesotrophic state as range of $40{\sim}50$ in TSI value. But, in the case of TP as nutrients, all reservoirs showed highly eutrophic state which was exceed to 70 in TSI value. According to above results, the water quality for small scale reservoirs in Kunsan is progressing by trophic state. therefore, for continuous use as agriculture water, we had better do establishment of management plan about water quality.