• Title/Summary/Keyword: Civil Engineering Projects

Search Result 923, Processing Time 0.024 seconds

A Relationship of Managing Impacts of FOREX Fluctuations and Organizational Capabilities in Construction Business

  • Mohamed, Mohd Amizan Bin;Teo, Melissa;Kajewski, Stephen;Trigunarsyah, Bambang
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.477-480
    • /
    • 2015
  • Construction projects are high-risk activities. When undertaking such projects in an international setting, it can be complicated by foreign exchange (FOREX) fluctuation risk. This affects the construction business performance in various ways, namely its progress due to delays, which in turn create further problems, specifically cost overruns as a result of price increase in raw materials, disputes, arbitration, litigation and even, total abandonment. Thus, the effective management of FOREX fluctuations is crucial. Previous studies have focused on the need for contract safeguards, adequate insurance, careful planning and management, as well as foreign exchange futures hedging to address some of the risks triggered by FOREX fluctuations. An analysis of FOREX fluctuations in the international construction industry revealed that more often it was focused on project-specific issues. Currently, there is a relative lack of awareness on Organizational Capabilities (OC), the abilities that owned by the organization, which is essential in managing the impact of FOREX fluctuations. Where research has focused on OC, these are viewed in isolation. Therefore, this study attempts to close the gap by proposing a framework on managing the impact of FOREX fluctuations in the international construction industry, employing the OC perspective.

  • PDF

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

A multi-objective decision making model based on TLBO for the time - cost trade-off problems

  • Eirgash, Mohammad A.;Togan, Vedat;Dede, Tayfun
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.139-151
    • /
    • 2019
  • In a project schedule, it is possible to reduce the time required to complete a project by allocating extra resources for critical activities. However, accelerating a project causes additional expense. This issue is addressed by finding optimal set of time-cost alternatives and is known as the time-cost trade-off problem in the literature. The aim of this study is to identify the optimal set of time-cost alternatives using a multiobjective teaching-learning-based optimization (TLBO) algorithm integrated with the non-dominated sorting concept and is applied to successfully optimize the projects ranging from a small to medium large projects. Numerical simulations indicate that the utilized model searches and identifies optimal / near optimal trade-offs between project time and cost in construction engineering and management. Therefore, it is concluded that the developed TLBO-based multiobjective approach offers satisfactorily solutions for time-cost trade-off optimization problems.

Empirical Analysis of Man-hour Data to Support a Cost-Plus Pricing Approach for Estimating BIM Service Costs

  • Koo, Bonsang;Lee, Ghang;Kim, Chung-woon;Shin, Byungjin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.660-661
    • /
    • 2015
  • Building Information Modeling (BIM) is a nascent technology in Korea, and currently lacks formal guidelines to assist Architectural and Engineering (AE) firms in estimating BIM service fees, while also allowing government agencies to allocate budgets for the rendered BIM services. This research provides a method to estimate costs for BIM services based on the cost-plus pricing framework. The approach requires a generalized estimate of the man hour per floor area data to calculate the direct labor costs. Man-hour data were collected from forty five projects that have implemented BIM. Interpolation of the man-hours was performed to develop a general reference table for 'Type 2' (i.e., public schools and office buildings, etc.) projects. By providing an objective approach for estimating the costs of BIM services, it allows clients and AE firms to agree upon a fair cost for BIM related services, and thus expedite its adoption in Korea.

  • PDF

INVESTMENT EVALUATION OF TRANSPORTATION INFRASTRUTURE PROJECTS USING BINOMIAL REAL OPTION MODEL

  • Qiyu Qian;Xueqing Wang;Charles Y.J. Cheah
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.563-572
    • /
    • 2007
  • Transportation infrastructure is critical to economic growth of a country such as China. Careful evaluation of investments in traffic infrastructure projects is therefore pertinent. As traditional evaluation methods do not consider the uncertainty of future cash flows and mobility during project execution, the real option approach is gradually gaining recognition in the context of valuing construction and infrastructure projects. However, many of the cases only evaluate individual options separately although multiple options often exist in a typical large infrastructure project. Using a highway project in China as a case study, this paper first evaluates a deferment option and a growth option embedded in the project. Subsequently, the values are combined using the fuzzy analytical hierarchy process. It is found that the combined value is less than the sum of the two option values. This finding is consistent with the theoretical observations given in past real option literature despite the use of a different approach.

  • PDF

OPTION DESIGN STRATEGIES FOR INFRASTRUCTURE PROJECTS

  • Charles Y. J. Cheah;Jicai Liu
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.980-985
    • /
    • 2005
  • Since the 1980s, Build-Operate-Transfer and its variations have become a common approach to develop large-scale infrastructure projects. Despite the slight variations in contractual settings, the key issue for all parties concerned is to assess the risks and uncertainties inherent in a project. The risk factors studied and highlighted by past researchers are very diverse. This paper starts with an objective to compare the risk factors in different sectors of infrastructure, and then categorize them into two kinds: general and specific. Following this classification, risk mitigation strategies should be adopted differently at the corporate and project levels. A few short cases have also been used to illustrate the flexible measures or "options" that some project participants have designed to address risks and uncertainties at the two levels.

  • PDF

Managing Mega-Project Complexity in Five Dimensions

  • Gransberg, Douglas D.;Jeong, H. David
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.6-9
    • /
    • 2015
  • Traditional project management theory is based on a three-dimensional life cycle approach where the project managerseeks to optimize the dimensions of cost-schedule-technical (quality or design). This paper reports the findings of a case study analysis of two complex mega-projects in Michigan which confirm the findings of previous research and illustrates the use of a framework for five-dimensional project management (5DPM) that is for conceptualizing a complex project's scope of work. The framework elevates the recognition that the project's social/political context and the financial arrangements create complexity adding two new dimensions. This paper also demonstrates a methodology to graphically display a project's complexity to better understand and prioritize the available resources. The result is a "complexity footprint" that may help a complex project manager identify the boundary between controllable and uncontrollable projects impacts. The paper finds that applying 5DPM to the two case study projects has given the project delivery team a tool which is actually adding value to the complex project management process.

  • PDF

Geoenvironmental Characteristics of Sorted Soil From Unregulated Landfill Wastes (불법매립폐기물에서 선별된 토사의 지반환경공학적 특성 분석)

  • Chung, Ha-Ik;Kim, Sang-Keun;Ryu, Kwon;Lee, Yong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.605-610
    • /
    • 2001
  • There has been a steady increase in geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation on geoenvironmental characteristics related to waste landfill and waste soil. This study was carried out to evaluate the geoenvironmental properties of sorted soil from unregulated landfill wastes. The physical, mechanical, and environmental Properties of sorted soil were investigated for utilization in civil works.

  • PDF

High MSE wall design on weak foundations

  • Mahmoud Forghani;Ali Komak Panah;Salaheddin Hamidi
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.329-341
    • /
    • 2024
  • Retaining structures are one of the most important elements in the stabilization of excavations and slopes in various engineering projects. Mechanically stabilized earth (MSE) walls are widely used as retaining structures due to their flexibility, easy and economical construction. These benefits are especially prominent for projects built on soft and weak foundation soils, which have relatively low resistance and high compressibility. For high retaining walls on weak foundations, conventional design methods are not cost-effective. Therefore, two alternative solutions for different foundation weakness are proposed in this research: optimized multi-tiered MSE walls and single tier wall with foundation improvement. The cost optimization considers both the construction components and the land price. The results show that the optimal solution depends on several factors, including the foundation strength and more importantly, the land price. For low land price, the optimized multi-tiered wall is more economical, while for high land price (urban areas), the foundation improvement is preferable. As the foundation strength decreases, the foundation improvement becomes inevitable.

Identification and risk management related to construction projects

  • Boughaba, Amina;Bouabaz, Mohamed
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.445-465
    • /
    • 2020
  • This paper presents a study conducted with the aim of developing a model of tendering based on a technique of artificial intelligence by managing and controlling the factors of success or failure of construction projects through the evaluation of the process of invitation to tender. Aiming to solve this problem, analysis of the current environment based on SWOT (Strengths, Weaknesses, Opportunities, and Threats) is first carried out. Analysis was evaluated through a case study of the construction projects in Algeria, to bring about the internal and external factors which affect the process of invitation to tender related to the construction projects. This paper aims to develop a mean to identify threats-opportunities and strength-weaknesses related to the environment of various national construction projects, leading to the decision on whether to continue the project or not. Following a SWOT analysis, novel artificial intelligence models in forecasting the project status are proposed. The basic principal consists in interconnecting the different factors to model this phenomenon. An artificial neural network model is first proposed, followed by a model based on fuzzy logic. A third model resulting from the combination of the two previous ones is developed as a hybrid model. A simulation study is carried out to assess performance of the three models showing that the hybrid model is better suited in forecasting the construction project status than RNN (recurrent neural network) and FL (fuzzy logic) models.