• Title/Summary/Keyword: Circumferential force

Search Result 96, Processing Time 0.024 seconds

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 펌프 실의 누설 및 회전체동역학적 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-21
    • /
    • 2001
  • Basic equations and their solution procedure we derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients aye presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal (엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Lubrication Characteristic of a Disk Type Wave Thrust Bearing (Wave가 있는 원판형 추력베어링의 윤활특성)

  • 박태조;제태진;이운섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.888-891
    • /
    • 2002
  • This paper presents the lubrication characteristics of a disk type wavy thrust bearing. The hydrodynamic pressure distributions in the fluid film are numerically solved the Reynolds equation and then the bearing load capacity and friction forces acting on the disk are calculated. Especially the effects of number and amplitude of the circumferential waves are investigated for tilted operating conditions. The results showed that the load capacity increases with wave amplitude and optimum wave number exists for given design conditions. Therefore the results can be applied to enhance the lubrication performance of thrust bearing adopted in the scroll compressor.

  • PDF

A study on the torsional fatigue crack propagation behavior on the shaft with circumferential crack (환상구열을 갖는 축의 비틀림피로 구열성장거동에 관한 기초연구)

  • 김복기;최용식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.101-108
    • /
    • 1991
  • During torsional fatigue of externally cracked cylindrical specimen, crack face rubbing may occur. At this time, normal contact forces arise when shear displacements cause the crack faces to be wedged open due to mismatch of the fracture surface asperities. These normal forces, in turn, generate friction force which act in opposition to the applied shear stresses and reduce the effective stress intensity factor. The premise of the proposed work is that friction and wedging can be studied by measuring the shear and normal displacement across the crack mouth. We have measured the crack mouth compliance using the new biaxial extensometer.

  • PDF

Experimental Studies of the Forming Process for the Tubular Hydroforming Technology (관재 하이드로 포밍에 의한 성형 공정의 실험적 연구)

  • 김성태;임성언;이택근;김영석
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • In this paper, we developed the hydroforming simulator which can apply an axial compressive force and high internal pressure to bulge a tube. Experimental dtudies have been performed to investigate the effect of each parameters such as internal pressure and axial compression stroke required for the forming of circular components. Under the improper forming conditions there were two forming failures. One was the axial buckling due to excessive axial compressive load and the other was the circumferential necking fracture due to relatively high internal pressure. A safe forming zone without any failures exists between these two extreme zones. Also the condition of forming failure such as fracture is examined throughout the theoretical analysis. This paper covers a brief overview of the mechanism of hydroforming process as well as the design of die and tools.

  • PDF

Finite Element Analysis of a Burnishing Process for the Inner Surface of a Cylinder (실린더 내벽의 버니싱 공정에 대한 유한요소해석)

  • Park, J.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.372-377
    • /
    • 2010
  • Elasto-plastic finite element analysis was performed for a burnishing process for the inner surface of a cylinder by mandrel. Three different configurations in roughness of the inner surface, two different thicknesses of the cylinder wall, and five different diameters of the mandrel were selected for the present investigation. Although the surface roughness was improved with the increase of the mandrel diameter, defects of folding occurred as the mandrel diameter exceeded certain limits. Improvements in the surface roughness, distributions of effective strain, effective stress and residual circumferential stress, and the variation of mandrel force were also investigated.

A simple plane-strain solution for functionally graded multilayered isotropic cylinders

  • Pan, E.;Roy, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.727-740
    • /
    • 2006
  • A simple plane-strain solution is derived in this paper for the functionally graded multilayered isotropic elastic cylinder under static deformation. The solution is obtained using method of separation of variables and is expressed in terms of the summation of the Fourier series in the circumferential direction. While the solution for order n = 0 corresponds to the axisymmetric deformation, that for n = 2 includes the special deformation frequently utilized in the upper and lower bounds analysis. Numerical results for a three-phase cylinder with a middle functionally graded layer are presented for both axisymmetric (n = 0) and general (n = 2) deformations, under either the traction or displacement boundary conditions on the surface of the layered cylinder. The solution to the general deformation case (n = 2) is further utilized for the first time to find the upper and lower bounds of the effective shear modulus of the layered cylinder with a functionally graded middle layer. These results could be useful in the future study of cylindrical composites where FGMs and/or multilayers are involved.

Appearing Condition of Breaking Waves at Infant Stage and Numerical Simulation (쇄파의 초기단계 생성조건과 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.873-879
    • /
    • 2009
  • The steady breakers at an infant stage are investigated through the numerical simulation. The appearing condition and characteristics of the sub-breaking waves are reviewed by analysing bow waves. The instability analysis is possibly done through the relationship between the free-surface curvature and circumferential force, which is obtained from the momentum equations. Navier-Stokes equations are solved by a finite difference method where the body-fitted coordinate system, the wall function and the advanced mesh system are invoked. The numerical result shows that the gradient of M/$U_s$ is greatly influenced by the Froude number and the decrease of M/$U_s$ indicates that the flows are unstable. Additionally flows with plunging or spilling are simulated successfully, but the application of breakers to the severely broken wave still remains to be settled in the future.

Slurry Flow Simulation in the Separation Stage of Screw Decanter (스크류 데칸트 분리단 내부에서의 유동 해석)

  • Baek, Yeong-Su;Na, Eun-Su;Park, Jae-Deok
    • 연구논문집
    • /
    • s.31
    • /
    • pp.53-63
    • /
    • 2001
  • Numerical investigation based on the control-volume using finite-difference method has been made by the development of computer program in order to figure out the pattern of the flow field inside screw decanter. The typical flow pattern inside screw decanter is characterized by the two strong recirculation zones separated by the main stream from slurry discharge hole to exit. These recirculation regions and flow pattern are strongly influenced by the centrifugal force and the change of the value of slurry viscosities, that is,500, 1,000 and 3,000cp respectively. The wear of screw decanter appeared experimentally in two spots; one is near the circumferential area of the slurry discharge hole and the other is on the decanter blades at a certain height from the bottom to a different degree after the continuous long-term operation. These wears are partly explained by the flow pattern and the strong turbulence intensity near the recirculation attachment region.

  • PDF

Lubrication Analysis of Hydraulic Spool Valve with Groove Cross Sectional Shapes (Groove 단면형상에 따른 유압 Spool Valve의 윤활해석)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The spools in most hydraulic spool type control valve have several circumferential grooves to pre-vent well known hydraulic locking problems which result in high friction force and excessive wear. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the flow and lubrication characteristics of grooved hydraulic spool valve. The stream lines and pressure distributions are obtained for various groove cross sectional shapes and film thicknesses. The stream lines are highly affected by groove cross sectional shape but pressure distributions mainly depend on the film shape and its magnitude. Therefore the numerical method adopted in this paper and results can be use in designing of various grooved spool valve.