• Title/Summary/Keyword: Circumferential Weld

Search Result 35, Processing Time 0.021 seconds

A Study on the Residual Stresses by the Hole Drilling Measuring in the WeldZone (용접부의 천공 측정법에 의한 잔류 응력에 관한 연구)

  • NamKoong, Chai-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.115-121
    • /
    • 2008
  • A knowloedge of the residual stress distribution at circumferential welds can increase the prediction accuracy of a fracture assessment in pipe lines. In this study, in order to predict the residual stress distribution in the circumferential butt-welded pipes were measured, using the hole-drilling strain gauge method. Their practical applications were performed in to two kinds of pipes. As the results, the following characteristics were found. On the inner surface of pipes, the circumferential and axial residual stresses were both tensile near the center line of welding and both of them changed from tensile to compressive as the distance from the center line increased. On the outer surface, however, the circumferential residual stress was shown to be tensile wile the axial residual stress was compressive near the center line of welding, and later they were revered at the region far away from the centerline.

The Eexperimental Studies on Residual Stresses due to Circumferential Welds in thin Steel Cylinder (圓筒管의 圓周熔接時 發生되는 殘留應力에 관한 實驗的 硏究)

  • 엄동석;류기열
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • The residual stresses produced by a circumferential weld between axisymmetric cylinders are one of the most important problems concerning buckling strength, fatigue strength, stress corrosion cracking in shell structures, and arc quite different from those due to a butt weld between flat plates. This paper presents experimental studies on weld cylinder models of various heat inputs and thin cylinder diameters by blind hole drilling method. As a result, it is certified that weld residual stress (axial stress and hoop stress) is larger, as heat input and shell cylinder diameter are larger, and that experimental results show good agreement with the result of preceding researchers.

  • PDF

The Studies on the Prediction of Residual Stresses by Thermal Elasto-Plastic Analysis and its Effect for Circumferential Welded Cylinder (열탄소성 해석에 의한 원주용접 원통관의 잔류응력 예측과 그 영향에 대한 연구)

  • 류기열;엄동석
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.115-123
    • /
    • 1997
  • The buckling strength, fatigue strength, stress corrosion cracking are considerably effected on one of initial imperfections, the residual stresses produced by a circumferential weld between axisymmetric cylinders. Therefore, we study the residual stresses, plastic strain and temperature distribution with using thermal elasto-plastic analysis which are generated by a circumferential weld between axisymmetric cylinders. It is investigated that welding residual stresses have an effect on the strength of cylinder for inner and outer shell under external pressure.

  • PDF

Estimations of Strain-Based J-integral and CTOD for Circumferential Outer Surface Crack in the Weld of Gas Pipeline Under Axial Displacement (축방향 변위가 작용하는 가스 파이프라인 용접부에 존재하는 원주방향 외부표면균열의 변형률 기반 J-적분 및 CTOD 계산)

  • Kim, Kyoung-Min;Park, Ji-Su;Moon, Ji-Hee;Jang, Youn-Young;Park, Seung-Hyun;Huh, Nam-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.100-109
    • /
    • 2020
  • Pipelines subjected to ground movement would be easily exposed to large-scale deformation. Since such deformations may cause the pipeline failure, it is important to ensure the safety of pipelines in various operation conditions. However, crack in weld metal have been considered as one of the main causes that can deteriorate the structural integrity of the pipeline. For this reason, the structural integrity of the pipe containing the crack in the weld should be obtained. In order to assess cracked pipe, J-integral and crack-tip opening displacement(CTOD) have been applied widely as the elastic-plastic fracture mechanics parameters representing crack driving force. In this study, engineering solutions to calculate the J-integral and CTOD of pipes with a circumferential outer surface crack in the weld are proposed. For this purpose, 3-dimensional elastic-plastic finite element(FE) analyses have been performed considering the effect of overmatch and width of weld. The shape of the weld was simplified to I-groove, and axial displacement was employed as for loading condition. Based on FE results, the effects of crack size, material properties and width of weldment on J-integral and CTOD were investigated. Additionally, the J-integral and CTOD for I-groove were compared with those for V-groove to examine the effects of the weld shape, and a proportionality coefficient of J-integral and CTOD was calculated from the results of this paper.

Design of Specimen for Weld Residual Stress Simulation (용접 잔류응력 모사를 위한 시편 설계)

  • Kim, Jin-Weon;Park, Jong-Sun;Lee, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.67-72
    • /
    • 2008
  • The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding of pipe. Specimen type and method for residual stress generation were proposed based on the review of prior studies and parametric finite element simulation. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element simulation considered in the specimen design. Comparison of residual strains measured at several locations of specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen can reasonably simulate the residual stress of circumferential butt welding of pipe.

  • PDF

Design of a Laboratory Specimen for Simulation of Weld Residual Stress (용접 잔류음력 모사를 위한 시편 설계)

  • Kim, Jin-Weon;Park, Jong-Sun;Lee, Kyoung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding between pipes. Specimen type and method to generate residual stress were proposed based on the review of prior studies and parametric finite element analysis. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element analysis considered in the specimen design. Comparison of residual strains measured at several locations on the specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen in this study can reasonably simulate the axial residual stress of a circumferential butt welding of pipe.

Characteristics of Fatigue Behavior and Fracture Surfaces by Rotary Bending Test in SM45C Welding Zone (SM45C용접부에서 회전굽힘시험에 의한 피로 및 파단면의 특성)

  • Lee, Yong-Bok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • SM45C steel rods using generally for machine components were selected and welded by butt-GMA welding method for this study. And then they were studied about characteristics of fatigue behavior and fracture surfaces by rotary bending test. Fatigue strength in weld zone present highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. The region of infinite life by Haigh diagram present highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. Fatigue cracks in unnotched specimens of base metal and weld zone introduce simultaneously from extensive out-side of circumferential cross-section and propagate to the other side indicating beach markings and dimples according to consolidation of fatigue cracks. Fatigue cracks in all of notched specimens introduce simultaneously in out-side of circumferential cross-section by high stresses and propagate to center of it indicating beach markings.

Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld (원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석)

  • Kim, Sang-Hyun;Han, Jae-Jun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1379-1386
    • /
    • 2013
  • The present work reports the mismatch limit loads for a V-groove welded pipe for a circumferential crack using finite element (FE) analyses. To integrate the effect of groove angles on mismatch limit loads, one geometry-related slenderness parameter was modified by relevant geometric parameters including the groove angle, crack depth, and root opening based on plastic deformation patterns in the theory of plasticity. Circumferential through-wall cracks are located at the centre of the weldments with two different groove angles ($45^{\circ}$, $90^{\circ}$). With regard to the loading conditions, axial (longitudinal) tension and bending are applied for all cases. For the parent and weld metal, elastic-perfectly plastic materials are considered to simulate and analyze under- and over-matching conditions in plasticity. The overall results from the proposed solutions are found to be similar to the FE results.

A Case Study of Creep Crack Growth Remaining life Assessment for High Temperature Pressure Equipments (고온용 압력용기의 크리프 균열성장 잔여수명평가 사례 연구)

  • 백운봉;이해무;박종서;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.26-30
    • /
    • 2001
  • Creep crack growth lift of high temperature pressure equipments was assessed for various crack locations and for various material properties. Surface cracks at the inner and outer surface of the vessel in the axial and circumferential directions were considered. The crack was located in the weld metal, in the parent metal or at the weld interface. Results shored that the crack at the weld interface was the most dangerous one. The crack located outside is weaker than that located inside. Safety factors of the case in which improper material properties were used the to unavailability of the correct material properties were discussed.

  • PDF

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.