• Title/Summary/Keyword: Circulation water intake basin

Search Result 3, Processing Time 0.018 seconds

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

A study on the estimation of river water intake using the operating time of the pumping station (양수장의 가동시간을 이용한 하천수 취수량 산정방안 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, Jun-Ho;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • Water management agencies under the Ministry of Environment produce and accumulate qualified basic data for major rivers. However, the integrated management of the river water has been weak since the artificial water circulation process, such as the intaking and drainage of agricultural water, has not been examined in the basin, which includes many agricultural land. In this study, a study was conducted on how the power usage method (operating time method) based on the running time can be applied and improved among indirect flow rate measurement methods used to investigate flow rates collected by the riverside for agricultural water purposes, and thus the resultant data of high reliability can be obtained at low cost. The operation time method is suitable for small-scale water pumping stations where it is difficult to secure real-time power supply data. The reliability of the data was verified through the correlation analysis with the actual flow rate, and it was found that the flow rate calculated by the operation time method reflecting the level of the stream to which the inlet of the pumping station is connected can be reasonably matched with the actual flow rate. In addition, it was confirmed that the investment cost at the time of initial installation of the facility was highly efficient by generating qualified flow data at low cost through comparison with direct flow rate measurement methods. If flow data is secured by applying the operation time method to large and small water farms located along the riverside, it is expected that more quantitative and integrated stream water management will be possible.

Dynamics of High Turbid Water Caused by Heavy Rain of Monsoon and Typhoon in a Large Korean Reservoir (Andong Reservoir) (인공호에서 몬순과 태풍 강우에 의한 고탁수층의 이동과 소멸특성)

  • Park, Jung-Won;Shin, Jae-Ki;Lee, Hee-Moo;Park, Jae-Chung
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.105-117
    • /
    • 2005
  • During the period of heavy rain from 2002 to 2004, the characteristics of the inflow, temporal and spatial fluctuations of high turbid water according to thermal stratification were studied on the Andong Reservoir which is the largest artificial lake in the Nakdong River basin, Korea. Thermal stratification was formed in June. Its structure determined to the pathway of inflowing turbid water and has affected by the transportation of high turbid water. Regardless of the time and amount of inflow, the high turbid water showed the shape of underflow at the riverine zone, separated from the bottom at the transition zone and moved to the lacustrine zone with the shape of density current. The plunging point depended on the time and amount of inflow. The distributions of thermal stratification and DO concentrations were changed by inflowing discharge. Two thermoclines and minimum DO layers were found out existing at metalimnion in a specific time, respectively. The layer of high turbid water which formed with the thickness of 20 m at the maximum below the depth of 15 m moved toward dam. Not settled to the bottom, the newly formed layer was discharged through the intake-outlet and dispersed into all layers by the circulation in the fall.