• Title/Summary/Keyword: Circulating current impedance

Search Result 21, Processing Time 0.033 seconds

Analysis of Sheath Circulating Current on Multi-underground Transmission Cables using EMTP (다회선 지중송전 케이블에서의 EMTP를 이용한 시스 순환전류 분석)

  • Ha, Che-Ung;Kim, Jeong-Nyeon;Lee, Su-Gil;Kim, Dong-Uk;Lee, Jong-Beom;Gang, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.510-517
    • /
    • 2002
  • The use of underground transmission cables has continuously increased in densely inhabited urban and suburban area. Due to a increasing demand of underground cables, two or more circuits are installed in parallel for several kilometers. It, however, has not been realized that the sheath circulating current is generated in the system where a large number of cables are laid in the same route. In this paper, sheath circulating current is analyzed by the EMTP and compared with the measured values. Unbalance arrangement of cables or cross-bonding length causes a significant effect on the magnitude of the sheath current. Sheath circulating current could be greatly reduced by the symmetrical configuration of cables and installation of the impedance reduction system. Especially, with the impedance system of 1Ω installed, the sheath circulating current is reduced by 85.7%.

Simplified Impedance Modeling and Analysis for Inter-Turn Fault of IPM-type BLDC motor

  • Kim, Byeong-Woo;Kim, Kyung-Tae;Hur, Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM)-type BLDC motor having stator inter-turn faults. We also propose impedance modeling of the magnetic characteristics. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the distributed characteristics of an inter-turn fault operated by a six-switch inverter are investigated considering speed control. Moreover, this paper presents the flux density distribution and torque characteristics for analyzing the inter-turn fault of an IPM-type BLDC motor. Additionally, fault impedance is required to calculate the circulating current that causes magnetic distortion. Thus, this paper proposes a method for estimating the circulating current taking into account the voltage at the shorted turn and the rotating speed. The analysis data were verified experimentally.

Droop Control Method for Circulating Current Reduction in Parallel Operation of BESS (BESS의 병렬운전 시 발생되는 순환 전류 저감을 위한 드룹 제어 기법)

  • Sin, Eun-Suk;Kim, Hyun-Jun;Yang, Won-Mo;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.708-717
    • /
    • 2015
  • This paper proposes a new reduction scheme of circulating current when two units of BESS (Battery Energy Storage System) are operated in parallel with conventional droop control. In case of using conventional droop, the terminal voltage of each BESS are not equal due to the unequal line impedance, which causes the circulating current. The operation performance of BESS is critically dependant on the circulating current because it increases system losses which causes the increasement of required system rating. This paper introduces a new reduction scheme of circulating current in which the terminal voltage difference of each BESS is compensated by adding feed-forward path of line voltage drop to the droop control. The feasibility of proposed scheme was first verified by computer simulations with PSCAD/EMTDC software. After then a hardware prototype with 5kW rating was built in the lab and many experiments were carried out. The experimental results were compared with the simulation results to confirm the feasibility of proposed scheme. Two parallel operating BESS with proposed scheme shows more accurate performance to suppress the circulating current than those with the conventional droop control.

Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs (이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법)

  • Ryu, Hyo-Jun;Yoon, Young-Doo;Mo, Jae-Sung;Choi, Seung-Cheol;Woo, Tae-Gyeom
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.

Novel Adaptive Virtual Impedance-based Droop Control for Parallel Operation of AC/DC Converter for DC Distribution (새로운 가상 임피던스 선정기법 기반의 적응 드룹을 이용한 직류배전용 AC/DC 컨버터의 병렬운전)

  • Lee, Yoon-Seong;Kang, Kyung-Min;Choi, Bong-Yeon;Kim, Mi Na;Lee, Hoon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.328-329
    • /
    • 2020
  • The AC/DC converter, which connects the AC grid to the DC grid in the microgrid, is a critical component in power sharing and stable operation. Sometimes the AC/DC converters are connected in parallel to increase the transmission and reception capacity. When connected in parallel, circulating current is generated due to line impedance difference or sensor error. As a result of circulating current, there is deterioration and loss in particular PCS(Power Conversion System). In this paper, we propose droop control with novel adaptive virtual impedance for reducing circulating current. Feasibility of proposed algorithm is verified by PowerSIM simulation.

  • PDF

A Study on the Reduction Methods of Sheath Circulating Current using the Reduction Equipment in Underground Transmission Systems (지중송전계통에서 저감장치를 이용한 시스 순환전류 저감방안에 관한 연구)

  • Gang, Ji-Won;Yang, Hae-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.474-481
    • /
    • 2002
  • Sheath circulating current is increased in the change of sheath mutual impedance which is caused by unbalanced cable system, and different section length between joint boxes. If excessive current flows in sheath, sheath loss which is reduced the transmission capacity is produced. Recently, excessive sheath circulating current was partially measured in underground cable systems of KEPCO. Accordingly, actual schemes to reduce excessive sheath circulating current are urgently required for installed cable system as well as newly-installing cable systems. This paper describes the relation analysis of sheath circulating current and burying types. And also, various schemes to reduce excessive circulating current using EMTP/ATPDraw and applicable schemes are proposed through a detailed analysis regarding cable systems by considering various electrical and environmental factors. It is evaluated that the proposed reduction schemes can be effectively applied to reduce the excessive sheath circulating current with the minimized electrical problems. And reduction effect is Proved with sheath circulating current reduction equipment.

Model Predictive Control of Circulating Current Suppression in Parallel-Connected Inverter-fed Motor Drive Systems

  • Kang, Shin-Won;Soh, Jae-Hwan;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1241-1250
    • /
    • 2018
  • Parallel three-phase voltage source inverters in a direct connection configuration are widely used to increase system power ratings. A zero-sequence circulating current can be generated according to the switching method; however, the zero-sequence circulating current not only distorts current, but also reduces the system reliability and efficiency. In this paper, a model predictive control scheme is proposed for parallel inverters to drive an interior permanent magnet synchronous motor with zero-sequence circulating current suppression. The voltage vector of the parallel inverters is derived to predict and control the torque and stator flux components. In addition, the zero-sequence circulating current is suppressed by designing the cost function without an additional current sensor and high-impedance inductor. Simulation and experimental results are presented to verify the proposed control scheme.

On DC-Side Impedance Frequency Characteristics Analysis and DC Voltage Ripple Prediction under Unbalanced Conditions for MMC-HVDC System Based on Maximum Modulation Index

  • Liu, Yiqi;Chen, Qichao;Li, Ningning;Xie, Bing;Wang, Jianze;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.319-328
    • /
    • 2016
  • In this study, we first briefly introduce the effect of circulating current control on the modulation signal of a modular multilevel converter (MMC). The maximum modulation index is also theoretically derived. According to the optimal modulation index analysis and the model in the continuous domain, different DC-side output impedance equivalent models of MMC with/without compensating component are derived. The DC-side impedance of MMC inverter station can be regarded as a series xR + yL + zC branch in both cases. The compensating component of the maximum modulation index is also related to the DC equivalent impedance with circulating current control. The frequency characteristic of impedance for MMC, which is observed from its DC side, is analyzed. Finally, this study investigates the prediction of the DC voltage ripple transfer between two-terminal MMC high-voltage direct current systems under unbalanced conditions. The rationality and accuracy of the impedance model are verified through MATLAB/Simulink simulations and experimental results.

A Study on the Transient Characteristic and Protection Schemes of Sheath Circulating Current Reduction Equipment (시스 순환전류 저감장치의 과도특성 및 보호방식에 관한 연구)

  • 강지원;한용희;정채균;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.421-428
    • /
    • 2003
  • After the cable is installed, many geometric factors, such as bowing types of the cable and the length difference of the cable between each minor section will cause the impedance unbalance between cables. The impedance unbalance will increase or decrease the sheath circulating currents, which are critical to human safety and sustaining the capabilities of electric power. Accordingly, in this paper, a new method is also proposed to reduce the sheath circulating currents and an reduction equipment according to the theory of the new method is developed. The reduction equipment is tested when the cable is on service. The test results show that it can reduce the sheath circulating currents by up to 97.8[%]. This confirms the validation of the new method and the reduction equipment, and assures the safe operation of the transmission cables. In order to illustrate the safe operation of the cable with new current reduction equipment at transient state due to lightning and single line-to-ground fault, extensive simulations have been made. Then the protection scheme of sheath circulating currents reduction equipment is proposed by adopting the new device of RDP(Reduction Device Protector).

A Study on the Reduction of Sheath Circulating Current in Underground Transmission Systems (지중송전계통의 시스순환전류 저감에 관한 연구)

  • Jung, C.K.;Hong, D.S.;Lee, J.B.;Kang, J.W.;Yu, C.H.;Kang, W.T.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.29-33
    • /
    • 2001
  • Sheath circulating current results from the change of sheath mutual impedance which is caused by unbalanced cable system, and different section length between joint boxes. If circulating over current flows in sheath, it produces much sheath loss which reduces the transmission capacity. And also such large sheath current influences severely on the operator. Recently, large sheath circulating current was partially measured in underground cable system of KEPCO. Accordingly, actual schemes to reduce sheath circulating over current is urgently required for installed cable system as well as newly-constructing cable system. This paper describes the analysis of sheath circulating current and various schemes to reduce the large circulating current in case of operating cable system using EMTP/ATPDraw. And also, possible schemes are proposed through a detailed analysis regarding cable systems by considering various electrical and environmental factors. It is evaluated that the proposed reduction schemes can be effectively applied to reduce the large sheath circulating over current with the minimized electrical problems.

  • PDF