• 제목/요약/키워드: Circulate Water channel

검색결과 6건 처리시간 0.015초

고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구 (Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells)

  • 안성하;오경민;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

사이드 채널형 재생블로워의 내부 유동 가시화 (Visualization of Flow inside the Side Channel Type Regenerative Blower)

  • 양현모;이경용;최영석;정경석
    • 한국유체기계학회 논문집
    • /
    • 제16권5호
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.

유속에 따른 아르헨티나 저층트롤어구 혼획저감장치의 형상변화 모형실험 (Model test to understand shape change of BRD (Bycatch Reduction Device) for demersal trawl of Argentina)

  • 차봉진;로쓰 리카르도;조삼광
    • 수산해양기술연구
    • /
    • 제51권3호
    • /
    • pp.312-320
    • /
    • 2015
  • The 1/5 scale-down model of the Bycatch Reduction Device (BRD) from an Argentinean demersal trawl was tested in a circulating water channel. The BRD is designed to help small Hake (merluza, merluccius hubbsi) to escape from a trawl. It is settled in front of a trawl codend, and is equipped with selection grids that help small fish to escape from the gear and guiding panels that help fish to meet with the grids. Bars of the grids are wires covered by the PVC and other parts of the BRD are made of net. When the velocity was less than 0.65 m/sec (2.81 Kont when translated to real towing speed) which is slow speed compared with real towing speed, position between an upper guiding panel and an upper selection grid were good to help small fish to escape. When the velocity was more than 0.8 m/sec (3.41 Knot when translated to real towing speed) which is similar to and faster than real towing speed, it was considered that small fish may have difficulties in escaping because the gap was not enough between an upper guiding panel and an upper selection grid. The lower selection grid was sat on the bottom of the tank without an angle due to the weight that it carries. Improvements were proposed to position the panels and the grids better.

모형실험과 시뮬레이션을 통한 활어 이송용 예인 가두리의 수직 및 수평 전개력 추정 (Estimation of vertical and horizontal spreading force of the towing cage for transporting the live fish by model test and simulation)

  • 박수봉;이춘우
    • 수산해양기술연구
    • /
    • 제50권2호
    • /
    • pp.176-184
    • /
    • 2014
  • Nowadays, consumption of fisheries products is increasing. There are several factors, one of which is a quantitative development through aquaculture. Another factor is an increase qualitative consumption of fish which require that fish be supplied alive. This requires a lot of technical effort to transport the live fish that have low survival rate (c.f. tuna and mackerel) in coastal waters and in the open sea. To develop a towing cage for transporting the live fish, model test in a circulate water channel and simulation by computer tool were carried out. In order to spread vertically, floats were attached at the upper part of the cage, and iron chains attached at the lower part of the cage. For horizontal spreading, kites were attached on the cage. The tension and spreading performance of the cage were measured. The result shows that the tension and reduction ratio of inside volume of the cage were tended to increase with increased towing speeds. The suitable operation condition in towing cage was 1.0 m/s towing speeds with vertical spreading force 8.7 kN, horizontal spreading force 5.6 kN; in this case the reduction ratio of inside volume of the cage was estimated as 25%.

수치 해석 및 모형실험을 이용한 수중 일점 계류식 조류발전 장치의 운동 성능 고찰 (Investigation of Motion of Single Point Moored Duct-type TCP System by Both Numerical and Experimental Method)

  • 조철희;박홍재;조봉근;김명주
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.212-219
    • /
    • 2017
  • As an environmental pollution and global warming due to an excessive carbon emission are intensified, the importance of renewable energy is in rise today. TCP (Tidal Current Power), one of the renewable energy sources, generates electricity by converting kinetic energy of current into rotational energy of turbine. Also the TCP has a great advantages of predictability and reliability. Because the generating power is proportional to cubic of stream velocity, amplifying current speed by applying duct is highly effective to increase the generating power. SPM (Single Point Mooring) can be applied for the weather vane with various current direction and also augments generating power of the system. In addition, simple installation and retrieval could be a merit of SPM system. By combining duct and SPM, TCP system for relatively low-speed-current and shallow water region can be feasible and economical. In this study, single point moored duct-type TCP system was designed and the motion of submerged structure was investigated in both numerical and experimental method. DNV wadam V4.8-1 and OrcaFlex 10.0a were used for the frequency and time domain motion analysis of system respectively. Duct model scaled by 0.05 of Froude conformity ratio and CWC (Circulate Water Channel) are used for experiment.

사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가 (Design and Performance Test of Savonius Tidal Current Turbine with CWC)

  • 조철희;이준호;노유호;고광오;이강희
    • 한국해양공학회지
    • /
    • 제26권4호
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.