• Title/Summary/Keyword: Circular-arc blades

Search Result 6, Processing Time 0.017 seconds

A Design Method for Cascades Consisting of Circular Arc Blades with Constant Thickness

  • Bian, Tao;Han, Qianpeng;Bohle, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.63-75
    • /
    • 2017
  • Many axial fans have circular arc blades with constant thickness. It is still a challenging task to calculate their performance, i.e. to predict how large their pressure rise and pressure losses are. For this task a need for cascade data exists. Therefore, the designer needs a method which works quickly for design purposes. In the present contribution a design method for such cascades consisting of circular arc blades with constant thickness is described. It is based on a singularity method which is combined with a CFD-data-based flow loss model. The flow loss model uses CFD-data to predict the total pressure losses. An interpolation method for the CFD-data are applied and described in detail. Data of measurements are used to validate the CFD-data and parameter variations are conducted. The parameter variations include the variation of the camber angle, pitch chord ratio and the Reynolds number. Additionally, flow patterns of two dimensional cascades consisting of circular arc blades with constant thickness are shown.

A Study on the Application of Vortex Panel Method to 2 - D Turbo - machinery (2차원 터보기계에서의 와류패널법 적용에 관한 연구)

  • 최민선;김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.44-51
    • /
    • 1993
  • Here is represented a vortex panel method to evaluate the performance characteristics of the 2-dimensional turbomachinery with circular arc blades or logarithmic blades. The present method is characterized by distributing small consecutive panels of linearly varing vortex strength satisfying boundary condition at control points and Kutta condition at trailing edge. To confirm the reliability of the present method, experimental result of a 2-D pump impeller of six circular arc blades is compared with the calculated one. As an application of the present method, figures are presented in series showing velocity and pressure distribution between blades.

  • PDF

Prediction of Cascade Performance of Circular-Arc Blades with CFD

  • Suzuki, Masami;Setoguchi, Toshiaki;Kaneko, Kenji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • Thin circular-arc blade is often used as a guide vane, a deflecting vane, or a rotating blade of low pressure axial-flow turbomachine because of its easy manufacture. Ordinary design of the blade elements of these machines is done by use of the carpet diagrams for a cascade of circular-arc blades. However, the application of the carpet diagrams is limited to relatively low cambered blade operating under optimum inlet flow conditions. In order to extend the applicable range, additional design data is necessary. Computational fluid dynamics (CFD) is a promising method to get these data. In this paper, two-dimensonal cascade performances of circular-arc blade are widely analyzed with CFD. The results have been compared with the results of experiment and potential theory, and useful information has been obtained. Turning angle and total pressure loss coefficients are satisfactorily predicted for lowly cambered blade. For high camber angle of $67^{\circ}$, the CFD results agree with experiment for the angle of attack less than that for shockless inlet condition.

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Effect of the Circular Saw-Blade Type and Wear on the Cutting Quality of a Glass Carbon-Fiber Hybrid Composite (원형 톱날의 형태와 마모가 유리 탄소섬유 하이브리드 복합재료의 절단 품질에 미치는 영향)

  • Baek, Jong-Hyun;Joo, Chang-Min;Kim, Su-Jin;Park, Yoon-Ok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.72-79
    • /
    • 2021
  • A circular saw is an effective tool for cutting glass and carbon-fiber hybrid composites. This study investigated tool wear and cut quality when reusing saw blades. The carbide saws wear four times faster than the new ones, and polycrystalline diamond (PCD) is very resistant to tool wear, except at the end of its lifespan. The cut cross-section quality is affected by the blade type, tool wear, and spindle speed. Alternate top bevel (ATB)-type blades are suitable for cutting fiber-reinforced plastics, but triple-chip grind (TCG)-type blades are unsuitable because they cause fiber-pullout defects. Tool wear and low spindle speeds increase the occurrence of arc scratches, due to the rear saw blade. A microscopic examination showed that the burr, which is a mixture of fiber chips and epoxy matrix, was bonded on top, and glass-fiber delamination occurred on the bottom glass-fiber-reinforced polymer (GFRP) surface.

Design for a circular arc shaped multi-blade windmill (원호형상의 멀티 블레이드를 가진 풍력터빈 설계)

  • Choo, Kwon Chul;Kim, Dong Keon;Yoon, Soon Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.390-395
    • /
    • 2004
  • The characteristics of the circular arc shaped multi-blade windmil are investigatedl. The prototypical windmill was tested in the laboratory at wind tunnel speeds of 5.5, 9.4m/s. and the model windmill was also tested in the laboratory, The power and torque coefficients were studied as functions of the blade section, the aspect ratio for blade diameter and windmill radius(M = 0.3, 0.5, 0.7), the number of blades and finally the tip-speed ratio. The analysis of the experimental results for the model windmill showed that there is the highest revolutions per minute(R.P.M) at the circular arc shaped multi-blade windmill having the blade number 10, aspect ratio(M = 0.7). and the results for the prototypical windmill showed that the power coefficient increased to a maximum value and then decreased again with an increase in the tip speed ratio, while the torque coefficient decreased directly with an increase in the tip speed ratio Finally, the experimental results were compared with the Savonius blade. the maximum power coefficient for the arc shaped blade was greater than for the Savonius blade and occured at a lower tip speed ratio.

  • PDF