• Title/Summary/Keyword: Circular polariscope

Search Result 26, Processing Time 0.027 seconds

Photoelastic Study on Stress Distribution of the Fixed Partial Dentures with Various Designed Endosseous Implants (수종 골내 임플란트의 보철 수복물에 가해진 응력 분산에 관한 광탄성학적 연구)

  • Lee, Nung-Soo
    • The Journal of the Korean dental association
    • /
    • v.25 no.12 s.223
    • /
    • pp.1145-1156
    • /
    • 1987
  • The purpose of this experimental study was to analyze the stress distribution from fixed partial dentures to the surrounding structures. This study was carried out on the experimental bridges with K-L blade, F.D.B.I.-11 type, F.D.B.I.-21 type, shape-memory metal blade and two-Apacerams as posterior abutment. The stress patterns and fringes were observed through the circular transmission polariscope. The results of this study were obtained as follows: 1. The stress was more concentrated to the roots apex than the implants. 2. In all blade implants, the stress was more concentrated to the distal side than the mesial side. 3. F.D.B.I.-11 type was more stress concentrated than the 21 type. 4. Shape-memory metal blade was the most effective for stress distribution. 5. Apacerams were more stress concentrated than the blde types and in the model of Apaceram with rubber-ring, anterior root was tipped distally.

  • PDF

Hybrid Stress Analysis around a Circular Hole in a Tensile Plate by Use of Phase Shifting Photoelasticity (광탄성 위상이동법에 의한 인장시편 원형 구멍주위 하이브리드 응력해석)

  • Baek, Tae-Hyun;Lee, Choon-Tae;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • A hybrid experimental-numerical method is presented for determining the stresses around a circular hole in a finite-width, tensile loaded plate. Measured fringe orders along straight lines provided the input information on the external boundary of the hybrid element. In order to see the effects of varying stress field, different numbers of terms in a power-series representation of the complex type conformal mapping stress function were tested. For qualitative comparison, actual isochromatic fringes were compared with reconstructed theoretical fringes using stress-optic law. For quantitative comparison, relative errors and standard deviations with respective to relative errors were analyzed for all measured points by changing the number of terms of stress function. The hybrid results are highly comparable with those predicted by FEA. The results show that this approach is effective and promising because isochromatic data along the straight lines in photoelasticity can be conveniently measured by use of phase shifting photoelasticity.

A PHOTOELASTIC ANALYSIS OF STRESS DISTRIBUTIONS AROUND FIVE DIFFERENT TYPES OF ENDOSSEOUS IMPLANTS ACCORDING TO THEIR STRUCTURES (5종 골내 임플란트의 구조에 따른 주위의 응력분산에 관한 광탄성학적 연구)

  • Lee Jeong-Nam;Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.643-659
    • /
    • 1993
  • This study was performed for the purpose of evaluating the stress distributions around five different types of implants according to their structures. The stress distribution around the surrounding bone was analysed by two-dimensional photoelastic method. Five epoxy resin models were made, and vertical and lateral forces were applied to the models. A circular polariscope was used to record the isochromatic fringes. The results of this study were summerized as follows : 1. Threaded type implants showed more even stress distribution patterns than cylinderical type implants when vertical and lateral forces were applied. 2. The stress concentrated patterns were observed at the neck portion and middle portion of the cylindrical type implants comparing with threaded type implants when vertical force was applied. 3. Model 1 and model 4 which are tthreaded type implants showed similar stress distribution patterns at the middle and apical portions and more stress was concentrated at the neck porion of model 1 comparing with model 4 when vertical force was applied. The stresses around model 1 were more evenly distributed when lateral force was applied. 4. More stress was concentrated at the neck and middle portion of cylindrical type implants than threaded type implants when lateral force was applied. 5. Model 1 showed the most even stress distribution patterns when lateral force was applied and stress distribution did no occured at the apical portion of modedl 2 when lateral force was applied. 6. There were almost no differences in stress concentrated patterns with or without having hollow design. And the stress concentrated patterns were observed at the corner of apex in model 5 which has hollow design when vertical force was applied.

  • PDF

PHOTOELASTIC ANALYSIS OF MANDIBULAR STRESSES INDUCED BY LINGUALIZED OCCLUSION (Lingualized Occlusion에 의한 하악응력의 광탄성학적 분석)

  • Kim, Sang-Soo;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.26 no.1
    • /
    • pp.153-169
    • /
    • 1988
  • There is a little scientific documentation reporting the stress, distribution to the edentulous mandible by different concepts of occlusal scheme. So, this study was to investigate the hypothesis that the magnitude and distribution of the occlusal stresses, transmitted through a mandibular complete denture base to the edentulous mandible, would be influenced by the lingualized occlusion. This investigation was performed to analyze the stresses induced in a three-dimensional photoelastic edentulous mandible, when a load is applied to the denture arranged into lingualized occlusion in centric relation, lateral and protrusive functional position. The mounted denture on a Dentatus Type ARO articulator was loaded in a pure vertical direction with 15kgs on the center of articulator in each case and the stresses were frozen into epoxy edentulous model at $127^{\circ}C$ in the stress freezing furnace. The stress-frozen epoxy models were sliced with diamond disc saw into 4mm thick. The slices were examined with a circular polariscope. The results were as follows: 1. In centric relation, the stresses were low at anteriors, and gradually increase to the premolar, molar area and highest at the first molar and gradually decrease from the second molar and lowest at the retromolar pad region. The lingual side showed higher stresses than labiobuccal side. 2. In lateral functional position, the working side showed higher stresses than the balancing side. In working side, the lingual side showed higher stresses than the buccal side and in balancing side, the buccal side showed higher stresses than the lingual side. 3. In protrusive position, stress distribution was symmetrical on the posteriors and the stresses were concentrated at the labial side of the anteriors.

  • PDF

A PHOTOELASTIC STUDY ON THE STRESS ANALYSIS UNDER MADIBULAR DISTAL-EXTENSION REMOVABLE PARTIAL DENTURE WITH DIFFERENT DESIGN OF THE MAJOR CONNECTOR (주 연결장치의 설계변화에 따른 하악 유리단 국소의치의 광탄성 응력 분석에 관한 연구)

  • Lee, Kyw-Chil;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.177-194
    • /
    • 1991
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a distal extension removable partial dentures with three kinds of mandibular major connectors, that is, lingual bar, linguoplate, and swing-lock attachment. A photoelastic model was made of the epoxy resin(PC-1) and hardener(PCH-1) and coated with plastic cement-1 (PC-1) at the lingual surface of the epoxy model and set with three kinds of chrome-cobalt removable partial dentures. A bilateral vertical load of 15kg to the middle portion of the metal bar crossing both the first molars of the right and the left, and a unilateral vertical load of 12.5kg to the right first molar were applied with the use of specially designed loading device and the reflective circular polariscope was used to analyze the photoelastic model under each condition. The following results were obtained : 1. When the bilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 2. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 3. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the termial abutment or adjacent teeth on the non-loaded side showed the least stress distribution in case of swing-lock attachment. 4. When the bilateral vertical load and the unilateral vertical load were applied the swing-lock attachment showed the mildest uniform stress distribution on the edentulous area and the alveolar bone around the abutment teeth.

  • PDF

A PHOTOELASTIC STRESS ANALYSIS ON THE SUPPOTING STRUCTURE IN THE MANDIBULAR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE WITH VARIOUS DESINGS OF BACK-ACT10N CLASPS (하악 유리단 국소의치하에서 back-action 클래스프 설계 변화에 따른 광탄성 응력 분석)

  • Lim Soo-Lyoung;Kay Kee-Sung;Ko Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.379-400
    • /
    • 1992
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from the mandibular distal extension removable partial dentures with the mesial or distal placement of the occlusal rest and the mesial or distal connection in the back-action clasp with the five various designs of the back-action clasp, that is, the mesial connection and the distal rest, the distal connection and mesial rest, the mesial connection and mesial rest, the distal connection and the mesial and distal rest, and the mesial connection, and the mesial and distal rest. A photoelastic model was made of the epoxy resin(PC-1) and the hardner(PLH-1) with the acrylic resin teeth used and was coated with the plastic cement-1 at the lingual surface of the model and then five kinds of the removable partial dentures on the photoelastic model were set. A unilateral vertical load of 12.5 kg was applied on the central fossa of the first molar with the use of specially designed loading device and the pattern and distribution of the stress of the photoelastic model under each condition was analyzed by the reflective circular polariscope. The following results were obtained. 1. In the back-action clasp with the mesial connection and mesial rest of the case 3, the effect of the stress distribution was the most favorable. 2. In the back-action clasp with the mesial and distal rest, of the case 4 and 5, the stress distribution was more greatly showed in the terminal abutment. 3. Generally, the stress distribution was more favarable in the mesial connection than in the distal connection. 4. In the back-action clasp with the mesial connection of the case 1, 3 and 5, the stress distribution was the most favorable in the mesial rest.

  • PDF

Photoelastic evaluation of Maxillary Posterior Crossbite Appliance (Maxillary Posterior Crossbite Appliance의 적용시 응력 분포에 관한 광탄성법적 연구)

  • Jang, Sung-Ho;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.549-558
    • /
    • 2001
  • This study was undertaken to demonstrate the forces in the maxillary alveolar bone generated by the activation of the maxillary posterior crossbite appliance In the treatment of posterior buccal crossbite caused by buccal ectopic eruption of the maxillary second molar. A photoelastic model was fabricated using a Photoelastic material (PL-3) to simulate alveolar bone and ivory-colored resin teeth. The model was observed throughout the anterior and posterior view in a circular polariscope and recorded photographically before and after activation of the maxillary posterior crossbite appliance. The following conclusions were reached from this investigation : 1. When the traction force was applied on the palatal surface of the second molar, stresses were concentrated at the buccal and palatal root apices and alveolar crest area. The axis of rotation of palatal root was at the root apex and that of the buccal root was at the root li4 area. In this result, palatal tipping and rotating force were generated. 2. When the traction force was applied on the buccal surface of the second molar, more stresses than loading on the palatal surface were observed in the palatal and buccal root apices. Furthermore, the heavier stresses creating an intrusive force and controlled tipping force were recorded below the buccal and palatal root apices below the palatal root surface. In addition, the axis of rotation of palatal root disappeared whereas the rotation axis of the buccal root moved to the root apex from the apical 1/4 area. 3. When the traction force was simultaneously applied on the maxillary right and left second molars, the stress intensity around the maxillary first molar root area was greater than the stress generated by the only buccal traction of the maxillary right or left second molar. As in above mentioned results, we should realize that force application on the palatal surface of second molars with the maxillary posterior crossbite appliance Produced rotation of the second molar and palatal traction, which nay cause occlusal Interference. That is to say, we have to escape the rotation and uncontrolled tipping creating occlusal interference when correcting buccal posterior crossbite. For this purpose, we recommend buccal traction rather than palatal traction force on the second molar.

  • PDF

Photoelastic evaluation of Mandibula Posterior Crossbite Appliance (Mandibular Posterior Crossbite Appliance의 적용시 응력 분포에 관한 광탄성법적 연구)

  • Jung, Won-Jung;Jang, Sung-Ho;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.559-566
    • /
    • 2001
  • This study was undertaken to demonstrate the forces in the mandibular alveolar bone generated by activation of the mandibular posterior crossbite appliance in the treatment of buccal crossbite caused by lingual eruption of mandibular second molar. A three-dimensional photoelastic model was fabricated using a photoelastic material (PL-3) to simulate alveolar bone. We observed the model from the anterior to the posterior view in a circular polariscope and recorded photogtaphically before and after activation of the mandibular posterior crossbite appliance. The following results were obtained : 1. When the traction force was applied on the buccal surface of the mandibular second molar, stress was concentrated at the lingual alveolar crest and root apex area. The axis of rotation also was at the middle third of the buccal toot surface and the root apex, so that uncontrolled tipping and a buccal traction force for the mandibular second molar were developed. 2. When the traction force was applied on the lingual surface of the mandibular second molar more stress was observed as opposed to those situations in which the force application was on the buccal surface. In addition, stress intensity was increased below the loot areas and the axis of rotation of the mandibular second molar was lost. In result, controlled tipping and intrusive tooth movements were developed. 3. When the traction forte was applied on either buccal or lingual surface of the second molar, the color patterns of the anchorage unit were similar to the initial color pattern of that before the force application. So we can use the lingual arch for effective anchorage in correcting the posterior buccal crossbite. As in above mentioned results, we must avoid the rotation and uncontrolled tipping, creating occlusal interference of the malpositioned mandibular second molar when correcting posterior buccal crossbite. For this purpose, we recommend the lingual traction force on the second molar as opposed to the buccal traction.

  • PDF

Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 순수굽힘보 시편의 재료 응력 프린지 상수 측정)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1387-1394
    • /
    • 2014
  • In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, ${\pi}/4$, ${\pi}/2$, and $3{\pi}/4$ radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material.

Simulation of Separating Isoclinics and Isochromatics from Photoelastic Fringes of a Disk using 8-step Phase Shifting Methodology (광탄성 프린지 위상이동법을 적용한 디스크의 등경 및 등색프린지 분리법에 관한 시뮬레이션)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Sung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Photoelasticity is one of the most widely used methods for whole field stress analysis. In photoelasticity, the difference and the directions of the principal stresses we given isochromatic and isoclinic fringe patterns. Conventionally, principal stress directions are measured manually by relating the polarizer and analyzer of a plane polariscope at the same time. This is known to be the Tardy compensation method. This measurement can be very tedious and time consuming in whole field analysis. It is not possible to separate isoclincs from photoelastic fringes by conventional photoelastic technique. In this study, photoelastic theory is represented by Jones matrices and 4-steps and 8-steps phase shifting methods are described A feasibility study using computer simulation is done to separate isoclincs and isochomatics from photoelastic fringes of a circular disk under diametrical compression. Fringe patterns of the disk are generated using stress optic law. The magnitudes of isoclincs and isochromatics obtained from 8-step phase shifting method are compared with those of theories. From computer simulation, it is verified to separate isoclincs and isochomatics from photoelastic fringes.

  • PDF