• Title/Summary/Keyword: Circular motion test

Search Result 62, Processing Time 0.025 seconds

Developement of Measuring System of Circular Motion Accuracy in Machining Center (머시닝 센터에서 원운동정도 측정시스템의 개발)

  • 김영석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.58-66
    • /
    • 1995
  • It is very important to test motion accuracy and performance of NC machine tools as they affect that of all other machines machined by them in industry. In this paper, in has become possible to detect errors of linear displacement of radial direction for circular motion test using newly assembled magnetic type of linear scales so called Magnescale ball bar system, and to calculate time interval getting error motion data and revolution angle of circular motion in machining center using tick pulses come out from computer. And a set of error data gotten from test is expressed to a plot by computer treatment and to numerics of error motion by statistical treatment and results of test are compared with those of Renishaw ball bar system.

  • PDF

Developement of Measuring Units of circular Motion Accuracy on NC Lathe (NC선반의 원 운동정도 측정장치의 개발)

  • 김영석;김재열
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.1-7
    • /
    • 2001
  • It is very important to test circular motion accuracy of NC machine tools as it affects all other machines machined by them in industries. In this paper, it has become possible to detect errors of linear displacement of radial directions for circle tar motion accuracy test using newly assembled magnetic type of linear scale so called Magnescale ball-bar system. It has also organized computer program systems using tick pulses come out from computer for getting error motion data at colt start time interval in circular motion test on NC lathe. Error data gotten from test is expressed to plots and analysed to numerics by various statistical treatments.

  • PDF

Prediction of Ship Maneuverability by Circular Motion Test (Circular Motion Test를 이용한 선박의 조종성능 추정에 관한 연구)

  • Shin, Hyun-Kyoung;Jung, Jae-Hwan;Lee, Ho-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.259-267
    • /
    • 2009
  • Recently, ship maneuverability has been very important issue due to accidents of frequent occurrence at sea. IMO standards for ship maneuverability were applied from January 1, 2004. In this study, maneuverability model tests were considered through a 2m-class KVLCC1 in the Ocean Engineering Wide Tank at University of Ulsan(UOU). Circular Motion Test(CMT) was performed to obtain the maneuvering coefficients by using X-Y Carriage. The trajectories simulated using the coefficients are compared with those of PMM test and free running test.

Developement of Measuring Units of Space Motion Accuracy in Machining Center (Machining Center의 공간정도 측정장치의 개발)

  • Kim, Young Seuk;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-47
    • /
    • 1995
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan, Circular test Method by Knapp and $r^{-{\theta} }$ Method by Tsutsumi etc., but these methods are all 2-dimentional measuring methods on plane. These simple methods of circular motion accuracy test of NC machine tools have been studied by many reserchers as above, but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units and the spindle of machining center. In this paper, in use of 2 rotary encoders and 1 magnetic type linear scale with resolution of 0.5 .mu. m, it has become possible for measuring of 3 dimentional space motion accuracy.

  • PDF

Measurement of motion accuracy by two-dimensional probe on NC machine tools -1st report, Measurement of the circular motion accuracy- (2차원 프로브에 의한 NC공작기계의 운동정밀도 측정 -제 1보 원호보간운동 정밀도 측정-)

  • JEON, Eon-Chan;OYAMADA, Shigenori;TSUTSUMI, Masaomi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1996
  • This paper presented a new measuring system to improve circular motion accuracy by using two-dimensonal probe and master ring for NC machine tools. This measuring system reduced the circular motion error conspicuously by eliminating the influence of the acceleration/deceleration range and compensating the friction force whose influences were significant while measuring the motion. Experimental results show that this system had enough accuracy to measure a circular motion for NC machine tools, compared with the circular test method and the r .theta. method.

  • PDF

Identification of motion error sources in NC machine tools by a circular interpolation test (원호보간시험에 의한 수치제어 공작기계의 운동오차원인 진단에 관한 연구)

  • Hong, Seong-Wook;Shin, Young-Jae;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.126-137
    • /
    • 1993
  • This paper presents an efficient method for the identification of motion error sources in NC machine tools by making use of the circular interpolation test, which is often used in estimating the motion accuracy of NC machine tools. Mathematical formulae are described for motion errors due to various kinds of error sources. Two identification formulae are proposed: one is based on the frequency analysis and the other is formulated with the weithted residual method. Motion error signal is classified into two patterns, mean errors(mean of CW and CCW test signals from mean errors). The sources of the mean errors are identified by using the frequency analysis technique and the sources of the deviation errors by the weighted residual formulaltion. A menu driven, user oriented, computer program is written to realize the full steps of the proposed identificationprocedure. Then, the identification method is applied to two NC machine tools.

  • PDF

Circular Motion Test Simulation of KVLCC1 Using CFD (CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션)

  • Shin, Hyun-Kyoung;Jung, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

Organizartion of Measurin System of Circular Motion Accuracy of Machining Center (머시닝센터의 원운동정도 측정시스템의 구성)

  • 김영석;낭궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.305-311
    • /
    • 1993
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan,Circular Test Method by Knapp and r $_{- \theta}$ Mathod by Tsutsumi etc., but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units. In this paper, in use of magnetic type linear scale with resolution of 0.5 .mu. m and tick pulses come out from computer, it has become possible for detecting of linear displacement of radial errors and measuring of revolution angle of circular motion of NC machine tools.

  • PDF

Model Test for Heave Motion Reduction of a Circular Cylinder by a Damping Plate (감쇠판에 의한 원기둥의 상하운동 저감 모형시험)

  • Koh, Hyeok-Jun;Kim, Jeong-Rok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2013
  • Motion reduction of an offshore structure at resonant frequency is essential for avoiding critical damage to the topside and mooring system. A damping plate has a distinct advantage in reducing the motion of a floating structure by increasing the added mass and the damping coefficient. In this study, the heave motion responses of a circular cylinder with an impermeable and a permeable damping plate attached at the bottom of the cylinder were investigated thru a model test. The viscous damping coefficients for various combinations of porosity were obtained from a free-decay test by determining the ratio between any pair of successive amplitudes. Maximum energy dissipation occurred at a porous plate with a porosity P = 0.1008. Experimental results for regular and irregular waves were compared with an analytical solution by Cho (2011). The measured heave RAO and spectrum reasonably followed the trends of the predicted values. A significant motion reduction at resonant frequency was pronounced and the heaving-motion energy calculated by the integration of the area under the heave motion spectrum was reduced by more than 75% by the damping plate. However, additional energy dissipation by eddies of strong vorticity and flow separation inside a porous damping plate was not found in the present experiments.

The Effect of 4M Learning Cycle Teaching Model based on the Integrated Mental Model Theory: Focusing on Learning Circular Motion of High School Students (통합적 정신모형 이론에 기반한 4M 순환학습 수업모형의 효과: 고등학생의 원운동 관련 기초 개념과 정신모형의 발달 측면에서)

  • Park, Ji-Yeon;Lee, Gyoung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.4
    • /
    • pp.302-315
    • /
    • 2008
  • Circular motion has been one of the most difficult concepts for students to understand. To facilitate for students to form scientific mental models about circular motion, this study developed 4M learning cycle teaching model based on the integrated mental model theory and strategies. For this study, fifty-three eleventh graders at a technical high school in Inchon were taught for 3 class hours. We conducted tests of basic physics concept and mental model of circular motion before, after, and two months after instruction. In results, we found that there were statistically significant improvement in the test of basic physics concept and mental model related with circular motion after instruction. Especially, this teaching model affected learning effectiveness of Correctness and Coherence of mental model.