• Title/Summary/Keyword: Circular fin-tube

Search Result 54, Processing Time 0.021 seconds

Analysis of Laminar Flow Through Internally Finned Tube (Fin이 부착된 원관내를 통과하는 층류 유동해석)

  • 정호열;정재택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.254-260
    • /
    • 2002
  • There have been many studies for the flow through internally finned tube, since the heat exchangers with fin device derive much attention in heat transfer enhance cent. In this study, analysis of laminar flow through the circular tube with longitudinal fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar and conformal mapping is used to obtain analytic solution. From the analytic solution, equi-velocity lines are shown, and the flow rate through the finned tube is calculated for various fin heights and numbers of fins. Darcy friction factor for this finned tube and shear stress distributions on the wall and fin are also considered.

Heat Transfer Characteristics of Fin-Tube Heat Exchanger using Two-Port Tube of Small Inner Diameter by Mechanical Expansion (연결세경관을 이용한 휜관형 열교환기의 기계확관에 의한 전열특성)

  • Lee, Sangmu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.428-433
    • /
    • 2016
  • The fin and tube heat exchanger using a two-port tube has in air-conditioner heat exchanger because heat transfer performance. This study investigates the feasibility of a fin and tube heat exchanger using two-port copper tube by mechanical expansion. The optimum size of the tube-expanding bullet for the heat exchanger using two-port tube was through numerical calculation. The heat exchanger using a two-port tube was fabricated by mechanical expansion, and the heat exchanger performance was evaluated condensation and evaporation experiments. Compared to the heat exchanger of a conventional circular tube, the pressure drop per unit length of the heat exchanger with a two-port tube decreased. Compared to the heat exchanger using a conventional circular tube, the overall heat transfer coefficient of heat exchanger with a two-port tube increased up to 13% in the case of condensation, and up to 25% in the case of evaporation. The two-port tube heat exchanger outperforms conventional heat exchanger for air conditioner with a inner grooved circular tube.

Frosting Heat Transfer Characteristics of Evaporators Used for Household Refrigerators According to Fin Configuration (냉장고용 증발기의 핀 형상 변화에 따른 착상 열전달 성능특성)

  • Lee, Moo-Yeon;Lee, Sang-Heon;Jung, Hae-Won;Kim, Yong-Chan;Park, Jae-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1071-1078
    • /
    • 2010
  • The objective of this study is to investigate the heat transfer characteristics of evaporators that have various fin configurations and are used in household refrigerators. The frosting and defrosting characteristics of a spirally coiled circular fin-tube evaporator, a discrete-plate fin-tube evaporator, and a continuous-plate fin-tube evaporator were measured and compared. Under non-frosting conditions, the heat transfer coefficient of the spirally coiled circular fin-tube evaporator was 22.3% and 40.2% higher than the coefficients of the discrete- and continuous-plate fin-tube evaporators, respectively. Under frosting conditions, the heat transfer coefficient of the spirally coiled circular fin-tube evaporator was 27.0% and 46.3% higher than the coefficients of the discrete- and continuous-plate fin-tube evaporators, respectively. In addition, the defrosting water amount of the spirally coiled circular fin-tube evaporator was 3.2% and 9.4% lower than the amounts in the case of the discrete- and continuous-plate fin-tube evaporators, respectively.

Forced Convection Heat Transfer for Two Circular Tube Arrays with Annular Fins (환형휜이 부착된 두 개의 원형관 배열에 대한 강제대류 열전달)

  • Kim, Seung-iI;Park, Sang-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1093-1101
    • /
    • 2020
  • This study was carried out numerically to investigate the air flow and thermal performance around single and parallel fin-tube heat exchangers and the cooling performance of the fluid inside the heat exchangers. In this study, the air velocity(1~7m/s), the pitch of fin(4, 6.1, 8, 11.3, 18.3, 44mm) and the diameter of fin(31, 33, 35, 37, 39mm) were varied. The flow rate of the water at the fin-tube heat exchanger inlet is 89cc/min and the water temperature is 353K. The air temperature at the upstream region of the heat exchanger is 300K. flow rate of the water at the fin-tube heat exchanger inlet is 80cc/min and the water temperature is 353K. It was found that the air pressure drop around single and parallel fin-tube heat exchangers was highly dependent on the air velocity and the fin pitch, but was independent of the fin diameter. Also, it was shown that pressure drop increased more the parallel arrangements than in single heat exchanger. The temperature difference of water at the inlet and outlet of the heat exchanger depended on the air velocity, the fin pitch and the fin diameter, and it was found that the parallel arrangement method further reduced the temperature of water. It was shown that the Nusselt number increased as the Reynolds number and the fin pitch increased, and decreased as the fin diameter increased.

Experimental Study of the Heat Transfer Rate of the Plate Fin-Tube Condenser for a Household Refrigerator (냉장고용 판형 핀-관 응축기의 열전달 성능에 관한 실험적 연구)

  • Son, Young-Woo;Lee, Jang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4802-4808
    • /
    • 2014
  • A plate-fin tube type heat exchanger has a lighter weight, approximately 30%, than the conventional circular-fin type condenser of household refrigerator. Because the low weight means low cost, it can have significant effects on the growth of related businesses if similar performance can be guaranteed. To check the possibility of the use of such a plate fin-tube condenser, experimental evaluations were performed in this study. Four different condensers including a conventional circular fin-tube condenser were used for the test. A well designed refrigerant supply system was used to supply similar conditions with a refrigerator, and the heat transfer rate and pressure drops of air side were measured precisely. As a result, the plate fin-tube type condensers showed a lower heat transfer rate of more than 13% than the conventional circular fin-tube type condenser, but the air side pressure drop was reduced and the heat transfer per unit weight was increased. Therefore, it shows the possibility of the use of a plate fin-tube type condenser after optimizing the air flow path and increasing the air flow to make a similar heat transfer rate.

VERIFICATION OF FIN EFFICIENCY THEORY FOR THE CIRCULAR FINNED-TUBE HEAT EXCHANGER BY NUMERICAL EXPERIMENT (원형휜-원형관 열교환기의 휜효율 이론에 관한 수치적 검증)

  • Kang, H.C.;Lim, B.B.;Lee, J.W.;Chang, B.C.;Ahn, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.137-142
    • /
    • 2008
  • The purpose of the present study is to investigate the convective heat transfer characteristics and the validity of fin efficiency of the circular finned-tube heat exchanger by using commercial CFD code. The heat transfer coefficient obtained by using the laminar model was 22% overestimated to the experimental data. The fin surface temperature compared with the experimental data measured by the liquid crystal method. The fin efficiency by the present numerical experiment, defined as normalized and averaged fin surface temperature, was greater than the theoretical fin efficiency and the difference is increased at high value of the factor m.

  • PDF

Experimental Investigation of Heat Transfer Enhancement in a Circular Duct with Circumferential Fins and Circular Disks

  • Taebeom Seo;Byun, Sang-Won;Jung, Myoung-Ryol
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1421-1428
    • /
    • 2000
  • The characteristics of heat transfer and pressure drop for fully developed turbulent flow in a tube with circumferential fins and circular were experimentally studied. The various spacing and sizes of circumferential fins and circular disks were selected as design parameters, while the effects of these parameters on heat transfer enhancement and pressure drop were investigated. In order to quantify the effect of heat transfer enhancement and the increase of pressure drop due to the fins and disks in a tube, the Nusselt numbers and the friction factors for various configurations and operating conditions were compared to those for a corresponding smooth tube. The results showed that the heat transfer rate was significantly enhanced by increasing the height of circumferential fins and decreasing the pitch of circumferential fins. On the other hand, the influence of the disk size and the fin-disk spacing were not significant. Based on the experimental results, a correlation for estimating the Nusselt number was suggested.

  • PDF

An Experimental Study of Vortex Formation of a Circular Cylinder with Serrated Fins (Serrated Fin Tube 후류에 대한 유동가시화 적용 및 근접후류 특성에 관한 연구)

  • Boo Jung-Sook;Kim Kyung-Chun;Ryu Byong-Nam
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.27-30
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo at al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference is occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

  • PDF

Analysis of flow and heat transfer in internally finned tube (내부 핀이 부착된 열교환기의 유동장해석)

  • Jeong Ho-Eyoul;Jeong Jae-Tack;Ko Hyung-Jong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.139-144
    • /
    • 1999
  • There have been many studies for heat transfer enhancement. Particularly, the study of flow in heat exchangers which have fin device has been main theme in heat transfer area. Practically, the circular tube which has internal fins is widely used for developing heat transfer rate. In this study, flow and heat transfer analysis of the circular tube with fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar. The conformal mapping is used for analytic solution of the laminar flow field. Discretization of governing equation, namely, FDM was used for numerical analysis. The velocity field, flow rate and shear stress are calculated for some numbers of fins in circular tube and for some heights of fin. Temperature fields are plotted along the tube length. It can be shown that the numerical solution agrees with the analytical solution.

  • PDF

Forced Convection Characteristics of V type Circular-finned Tube Heat Exchanger (V형 원형휜-원형관의 강제대류 열유동 특성)

  • Lee, Jong-Hwi;Lim, Mu-Gi;Kang, Hie-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1348-1354
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of V type circular fin-tube heat exchanger. Four kinds of V type fin having the same fin area and the different span wise angle tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for decreasing the span wise angle up to 58% and 25% respectively.

  • PDF