• 제목/요약/키워드: Circular failure

검색결과 350건 처리시간 0.032초

유동성 채움재를 이용한 지하 매설관의 변형특성 연구 (Deformation Behavior Underground Pipe with CLSM)

  • 박재헌;이관호;조재윤;성상규
    • 한국도로학회논문집
    • /
    • 제5권2호
    • /
    • pp.25-35
    • /
    • 2003
  • 원형지하매설관의 경우 관의 하단부의 다짐이 매우 어렵고, 또한 다짐효율이 떨어져서 지하매설물의 안정성을 저감시키고, 이로 인해 각종 파손이 발생하는 문제점을 가지고 있다. 이러한 문제점을 해결할 수 있는 하나의 대안으로 저강도 콘크리트 개념을 지반공학에 적용하여 만들어진 CLSM을 이용하는 것이다. 본 연구에서는 지금까지의 CLSM 실내실험결과를 이용하여 현장적용성 시험을 하기 위한 중간단계로서 베딩재, 뒤채움재, 관의 종류를 변화시킨 20가지 사례에 대한 PENTAGON 유한요소 프로그램을 이용하여 수치해석을 실시하였다. 수치해석을 실시한 결과 뒤채움재로 CLSM을 사용하는 경우에 토사나 일반모래를 사용한 경우보다 지표면 및 관의 침하를 현저히 감소시키는 것으로 해석되었다. 관의 연직변위를 놓고 볼 때 토사 뒤채움을 사용한 경우에 연성관의 변위량이 강성관의 2배 정도에 달했으나 CLSM으로 대체한 경우에는 오히려 토사 뒤채움에 강성관을 사용한 경우보다 변위가 줄어들었다. CLSM 뒤채움에 강성관을 사용한 경우도 유사하게 나타났고, CLSM이 구조적인 지지 역할을 확실히 함을 보여준다.

  • PDF

기초지반의 지지력보강공법에 관한 연구 (Studies on the Development of Bearing Capacity Reinforcement for the Foundation of Soil)

  • 유동환;최예환;유연택
    • 한국농공학회지
    • /
    • 제30권1호
    • /
    • pp.38-49
    • /
    • 1988
  • This paper presented as follows results of laboratory model tests with various shaped footings on soil bed reinforced with the strips on the base of behaviour of soil structure according to the loads and triaxial test results reinforced with geotextiles. Their parameters studied were the effects on the bearing capacity of a footing of the first layer of reinforcement, horizontal and vertical spacing of layers, number of layers, tensile strength of reinforcement and iclination load to the vertical 1.Depending on the strip arrangement, ultimate bearing capacity values could be more improved than urreinforced soil and the failure of soil was that the soil structure was transfered from the macrospace to microspase and its arrangement, from edge to edge to face to face. 2.The reinforcement was produced the reinforcing effects due to controlling the value of factor of one and permeable reinforcement was never a barrier of drainage condition. 3.Strength ratio was decreased as a linear shape according to increment of saturation degree of soil used even though at the lower strength ratio, the value of M-factor was rot influenced on the strength ratio but impermeable reinforcement decreased the strength of bearing capacity. 4.Ultimate bearing capacity under the plane-strain condition was appeared a little larger than triaxial or the other theoretical formulars and the circular footing more effective. 5.The maximum reinforcing effects were obtained at U I B=o.5, B / B=3 and N=3, when over that limit only acting as a anchor, and same strength of fabric appeared larger reinforcing effects compared to the thinner one. 6.As the LDR increased, more and more BCR occurred and there was appeared a block action below Z / B=O.5, but over the value, decrement of BCR was shown linear relation, and no effects above one. 7.The coefficient of the inclination was shown of minimum at the three layers of fabrics, but the value of H / B related to the ultimate load was decreased as increment of inclination degree, even though over the value of 4.5 there wasn't expected to the reinforcing effects As a consequence of the effects on load inclination, the degree of inclination of 15 per cent was decreased the bearing capacity of 70 per cent but irnproved the effects of 45 per cent through the insertion of geotextile.

  • PDF

인방보의 형태에 따른 개구부가 있는 전단벽의 거동 특성에 대한 실험적 연구 (Experimental Study of Coupled Shearwalls with different Coupling Member)

  • 배백일;최현기;최윤철;최창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.37-40
    • /
    • 2008
  • 세대병합형 리모델링의 경우 벽체의 개구부의 형성이 필수적이다. 그리하여 선행연구를 바탕으로 23%의 개구부면적을 가질 경우 큰 강성의 저하나 강도의 저하가 없다는 판단 아래, 인방보의 형태가 다른 세 실험체를 계획하여 횡력 가력 실험을 실시하였다. 슬래브를 인방보로 가지는 CW-RS는 형상비의 증가에 따른 휨파괴가 지배적이었고, CW-RBS와 CW-CS의 경우 인방보의 모멘트 분담에 의해 벽판의 전단 파괴 현상이 지배적이었다. 인방보의 면적에 따라 강도와 강성의 감소율이 영향을 받았으며 개구부의 형태가 결정하는 인방보와 벽체와의 접합 면적이 벽체의 거동을 지배한다고 생각된다.

  • PDF

Deformation behaviour of steel/SRPP fibre metal laminate characterised by evolution of surface strains

  • Nam, J.;Cantwell, Wesley;Das, Raj;Lowe, Adrian;Kalyanasundaram, Shankar
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.61-75
    • /
    • 2016
  • Climate changes brought on by human interventions have proved to be more devastating than predicted during the recent decades. Recognition of seriousness of the situation has led regulatory organisations to impose strict targets on allowable carbon dioxide emissions from automotive vehicles. As a possible solution, it has been proposed that Fibre Metal Laminate (FML) system is used to reduce the weight of future vehicles. To facilitate this investigation, FML based on steel and self-reinforced polypropylene was stamp formed into dome shapes under different blank holder forces (BHFs) at room temperature and its forming behaviour analysed. An open-die configuration was used in a hydraulic press so that a 3D photogrammetric measurement system (ARAMIS) could capture real-time surface strains. This paper presents findings on strain evolutions at different points along and at $45^{\circ}$ to fibre directions of circular FML blank, through various stages of forming. It was found initiation and rate of deformation varied with distance from the pole, that the mode of deformations range from biaxial stretching at the pole to drawing towards flange region, at decreasing magnitudes away from the pole in general. More uniform strain distribution was observed for the FML compared to that of plain steel and the most significant effects of BHF were its influence on forming depth and level of strain reached before failure.

Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression

  • Zhang, Xianggang;Deng, Dapeng;Lin, Xinyan;Yang, Jianhui;Fu, Lei
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.627-635
    • /
    • 2019
  • In order to study the axial compression performance of sand-lightweight concrete-filled steel tube (SLCFST) stub columns, three circular SLCFST (C-SLCFST) stub column specimens and three SLCFST square (S-SLCFST) stub column specimens were fabricated and static monotonic axial compression performance testing was carried out, using the volume ratio between river sand and ceramic sand in sand-lightweight concrete (SLC) as a varying parameter. The stress process and failure mode of the specimens were observed, stress-strain curves were obtained and analysed for the specimens, and the ultimate bearing capacity of SLCFST stub column specimens was calculated based on unified strength theory, limit equilibrium theory and superposition theory. The results show that the outer steel tubes of SLCFST stub columns buckled outward, core SLC was crushed, and the damage to the upper parts of the S-SLCFST stub columns was more serious than for C-SLCFST stub columns. Three stages can be identified in the stress-strain curves of SLCFST stub columns: an elastic stage, an elastic-plastic stage and a plastic stage. It is suggested that AIJ-1997, CECS 159:2004 or AIJ-1997, based on superposition theory, can be used to design the ultimate bearing capacity under axial compression for C-SLCFST and S-SLCFST stub columns; for varying replacement ratios of natural river sand, the calculated stress-strain curves for SLCFST stub columns under axial compression show good fitting to the test measure curves.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

부두 내 중력식 구조물 내진 보강을 위한 공법의 적정성 연구 (EA Study on Seismic Resistant Method for Gravity Structure in Port)

  • 나석현;이동혁
    • 한국지반환경공학회 논문집
    • /
    • 제23권11호
    • /
    • pp.13-18
    • /
    • 2022
  • 본 연구는 항만 중력식 구조물에 대한 내진보강을 분석하여, 그라우팅공법 적용의 적정성을 평가하고자 한다. 평가항목은 액상화, 활동, 전도 및 원호활동 등으로 공법의 적정성을 비교하기 위하여 그라우팅공법인 저유동성 모르타르 주입공법과 말뚝벽체식 보강공법인 SPC 파일 및 GRB 공법을 각각 평가하여 비교하였으며, 평가대상은 포항 구항 중력식 구조물로 선정하였다. 평가결과, 그라우팅공법과 말뚝벽체식 보강공법 모두 평가항목에 대하여 안정성을 충분히 확보하는 것으로 검토되었다. 따라서 중력식 항만 구조물의 경우 시공성, 경제성 및 유지관리 부분과 유사 시공사례 등을 고려 시 내진보강 공법으로 그라우팅공법이 보다 효율적임을 알 수 있었다.

circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis

  • Kaiyun Qin;Fenghua Zhang;Hongxia Wang;Na Wang;Hongbing Qiu;Xinzhuan Jia;Shan Gong;Zhengmao Zhang
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.184-189
    • /
    • 2023
  • Ovarian cancer (OC) is the most common gynecological malignancy worldwide, and chemoresistance occurs in most patients, resulting in treatment failure. A better understanding of the molecular processes underlying drug resistance is crucial for development of efficient therapies to improve OC patient outcomes. Circular RNAs (circRNAs) and ferroptosis play crucial roles in tumorigenesis and resistance to chemotherapy. However, little is known about the role(s) of circRNAs in regulating ferroptosis in OC. To gain insights into cisplatin resistance in OC, we studied the ferroptosis-associated circRNA circSnx12. We evaluated circSnx12 expression in OC cell lines and tissues that were susceptible or resistant to cisplatin using quantitative real-time PCR. We also conducted in vitro and in vivo assays examining the function and mechanism of lnc-LBCSs. Knockdown of circSnx12 rendered cisplatin-resistant OC cells more sensitive to cisplatin in vitro and in vivo by activating ferroptosis, which was at least partially abolished by downregulation of miR-194-5p. Molecular mechanics studies indicate that circSnx12 can be a molecular sponge of miR-194-5p, which targets SLC7A11. According to our findings, circSnx12 ameliorates cisplatin resistance by blocking ferroptosis via a miR-194-5p/SLC7A11 pathway. CircARNT2 may thus serve as an effective therapeutic target for overcoming cisplatin resistance in OC.

Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.399-415
    • /
    • 2023
  • This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.