• 제목/요약/키워드: Circular Process

Search Result 687, Processing Time 0.024 seconds

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

Implosion Analysis of Circular Cylinder using Simplified Model (간이물리모델을 이용한 원통형 압력용기의 내파해석)

  • Nho, In Sik;Cho, Sang Rai;Kim, Yong Yook;Han, Soonhung;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • The implosion phenomena of pressure vessels operating in deep water under extremely high external pressure have been well known. The drastic energy release to ambient field in the form of pressure pulse is accompanied with catastrophic collapse of shell structure. Such a proximity shock wave could be a serious threat to the structural integrity of adjacent submerged body and several suspected accidents have been reported. In this study, basic research for the occurrence and development of shock wave due to implosion was carried out. The mechanism of pressure pulse generation and energy dissipation were investigated, and a simplified kinematic model to approximate the collapse modes of circular tubes which can be generated by external pressure and implosion was examined. Using the simplified kinematic model, the process of energy dissipation was formulated, and the magnitude of released pressure shock wave was estimated quantitatively. To investigate the validity of developed kinematic model and shock wave estimation process, the results from a nonlinear FE analysis code and collapse test carried out using pressure chamber were compared with the results from the developed kinematic model.

A Study on the Weld Line Position for Hydroforming (Weld line위치에 따른 Hydroforming특성에 관한 연구)

  • 강대철;윤석만;전병희;오수익;전한수
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.504-511
    • /
    • 2000
  • Hydroforming is a forming process enabling circular metal tubes to be produced in complex cross sections along curved axial paths. This forming process is widely used to manufacture parts in automotive industry. This paper presents bending and forming results to following angle of weld line positions. These compare to good bending, bad bending and without weld line model case. And then this result of after forming compare to each forming cases. The purpose of this paper is found that adaptive weld line position for bended final shape.

  • PDF

A Study on the Weld Line Position Optimization for Hydroforming (Hydroforming을 위한 Weld line 최적배치에 관한연구)

  • 전병희
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.160-168
    • /
    • 2000
  • Hydroforming is a metal forming process that enables circular metal tubes to be formed in to the parts with the complex cross section along the curved axial direction. Recently this hydroforming process is largely used for the production of the automotive parts. This paper presents the results of tube bending and hydroforming simulations in cases of the varying weld line positions of the tube. Ten cases of prebending and hydroforming simulations are carried out to find the optiaml weld line position.

  • PDF

Development of Scribing Machine for Semiconductor Wafer (반도체 웨이퍼용 스크라이빙 머신의 개발)

  • 차영엽;최범식;고경용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.222-222
    • /
    • 2000
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing such as blade, wafer, cutting water and cutting conditions. Moreover we can not applicable this dicing method to GaN wafer, because the GaN wafer is harder than the other wafer as GaAs. In older to overcome this problem, a new dicing process is necessary. This paper describes a new machine using scriber and precision servo mechanism in order to dice a semiconductor wafer.

  • PDF

Ductile Fracture in the Central Region of Circular Plate in Rotary Forging

  • Park, Seogou;Oh, Hung-Kuk
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.337-342
    • /
    • 1996
  • The present investigation is concerned with application of theory on fracture to the prediction of workability of materials in rotary forging with special reference to center crack. The validity of the theory on ductile fracture was examined by the experimental data. Then the workability of materials in rotary forging was determined.

  • PDF

Comparison of Characteristics of Texture and Groove Precision Lapping Plate by Measuring Frictional Forces (마찰력 측정을 이용한 홈(Groove) 및 임의패턴 초정밀 연마판의 특성 비교)

  • Loh, Byoung-Gook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.21-26
    • /
    • 2006
  • Characteristics of texture and groove precision lapping plate are experimentally investigated by Measuring frictional forces. It is found that the frictional coefficient decreases as the embedding of diamond particles progresses. The groove precision lapping plate with concentric micro-channels indicates superior capability in embedding micrometer-sized diamond particles and uniformity in diamond embedding compared with the texture precision lapping plate with a series of circular micro-channels.

  • PDF

A New Technology to Remove Fly on the Knitting Process (니팅공정중에 발생하는 fly 제거를 위한 새로운 기술)

  • 구영석
    • Textile Coloration and Finishing
    • /
    • v.12 no.6
    • /
    • pp.361-371
    • /
    • 2000
  • The problematic effects of fly creation on circular knitting machines during the knitting process were investigated in order to develop a new method for tackling the problem. A new idea, i.e. coating the yarn surface with a polymer film, was studied. Important physical properties of the coated yarm were studied and compared with normal yarn. A new test-rig was designed to measure the coefficient of friction and the degree of shedding of yarn. Yarns were coated with seven polymer materials and the performance of the coated yarns was tested and the results are discussed.

  • PDF

Field Study on Wireless Remote Sensing for Stability Monitoring of Large Circular Steel Pipe for Marine Bridge Foundation (해상 교량기초용 대형 원형강관 가설공법의 무선 원격 안정성 모니터링을 위한 현장실험)

  • Park, Min-Chul;Lee, Jong-Sub;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.71-81
    • /
    • 2020
  • The large circular steel pipe for a marine bridge foundation has been developed as a construction method capable of performing the role of the working platform and cofferdam. The objective of this study is to demonstrate the wireless remote sensing system for monitoring the stability of the large circular steel pipe during construction and operation through field tests. The artificial seabed ground with an water level of 4 m is constructed for field tests. The large circular steel pipe with a diameter of 5 m and height of 9.5 m is installed into the ground by suction, and the embedded depth is 5 m. The inclinometer and strain gauges are installed on different surfaces of the upper module, and the tilt angle and stress are monitored throughout the entire construction process. As results, tilt angles are measured to be constant during the suction penetration. However, the tilt angle is larger in the x-axis direction. In addition, even when installed on different surfaces, the tilt angle in the same axial direction is measured to be almost the same. The stresses measured by strain gauges increase during suction penetration and decrease during pull-out. Based on measured stresses, it is found that the eccentricity is acting on the large circular steel pipe. This study shows that a wireless remote sensing system built with an inclinometer and strain gauge can be a useful tool for the stability monitoring of the large circular steel pipe.

Finite Element Simulation for Design of Compound Forging Process for a Hollow Flanged Spindle (플랜지형 중공 스핀들의 복합단조 공정설계를 위한 유한요소 시뮬레이션)

  • Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.69-75
    • /
    • 2010
  • A hollow flanged spindle is generally used for the assembly of the driving shaft in some vehicles. This part has conventionally been manufactured by both hot forging and machining process, in which case a circular billet is hot-forged into a flanged spindle blank and then its central part is machined for hollow. Therefore, the development of a new forming technology without further machining processes has strongly been in demand. In this study, a new compound forging process of the hollow flanged spindle was proposed through the finite element simulation. By the proposed compound forging process, both extruding of the spindle body part and piercing for the hollow inside it can be performed at the same time. Metal flow patterns, forging defects and forging forces were investigated through the finite element simulation results.