• Title/Summary/Keyword: Circular Cutting

Search Result 110, Processing Time 0.023 seconds

Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate

  • Meran, Ahmad P.;Samanci, Ahmet
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • In this study, the effect of various adhesively bonded composite patches on mechanical properties of notched Al-Mg alloy plates was analyzed. For this purpose firstly, the un-notched and notched specimens were fabricated from 5086 Al-Mg alloys which have been used in armor-plated military vehicles. The surface notches as a flaw were machined with circular cutting tool to form notch aspect ratio a/c=0.15 and notch-to-thickness ratios a/t=0.5 in the radial direction on the test specimens. Then, various composite patches which reinforced by glass, carbon and Kevlar fibers were bonded adhesively at elliptically surface notches. Finally, experimental measurements conducted by applying tensile static loading. The experimental results showed that repairing with composite patches with order of carbon, glass and Kevlar fibers have remarkable effect on tensile strength of the notched plate. Also the finite element models were developed using Abaqus/Explicit code to predict the tensile strength and elongation of unrepaired notched specimen and specimen repaired by carbon fiber composite patch. The comparison between numerical and experimental results showed good agreement between them and proved the accuracy of numerical modeling.

Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling (유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

The Stability Analysis Method with the Failure Shape in Cutting Slopes (절취사면에서의 파괴형태에 따른 안정해석방법)

  • Kang, Yea Mook;Chee, In Taeg;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 1998
  • This study was carried out to investigate the problem of analysis method of circular sliding, which uses a high rate to work out a countermeasure for landslides. The results of this study were summarized as follows : 1. As a result of the analysis of sliding surface along the soil layers in forty model slopes, the boundary layer in weathered soil and weathered rock indicated a very high possibility of sliding than in other places. 2. Because most landslides in Korea occur along the discontinuity face at the boundary of soil layers, below 2m. from land surface, it is a good method for safe design to work the countermeasure for these kinds of landslides in cutting slopes. 3. When the inclination of slopes is fixed and the length of slopes is changed, the cercular sliding slopes were more safe as the soil layers are more shallow and the length of slopes are shorter, but the safety ratio of infinite sliding slopes was same as the other even though their length of slopes was different. 4. As a result of the analysis by cercular sliding analysis method and infinite sliding analysis method with some condition that the inclination of slopes was $30^{\circ}$ degree, because most landslides in Korea occur at this condition, these methods indicated different results to each other as well as cercular sliding analysis method showed too much safety ratio than infinite sliding analysis method.

  • PDF

Development of Pressure Sensor on Polymer Substrate for Real-time Pulse and Blood Pressure Measurements (실시간 맥박 및 혈압 측정을 위한 폴리머 기판 압력센서 개발)

  • Kim, Jin-Tae;Kim, Sung Il;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.669-676
    • /
    • 2013
  • In this study, we introduce a polymer(polyimide) based pressure sensor to measure real-time heart beat and blood pressure. The sensor have been designed with consideration of skin compatibility of material, cost effectiveness, manufacturability and wireless detection. The designed sensor was composed of inductor coils and an air-gap capacitor which generate self-resonant frequency when electrical source is applied on the system. The sensor was obtained with metalization, etching, photolithography, polymer adhesive bonding and laser cutting. The fabricated sensor was shaped in circular type with 10mm diameter and 0.45 mm thickness to fit radial artery. Resonant frequencies of the fabricated sensors were in the range of 91~96 MHz on 760 mmHg pressurized environment. Also the sensor has good linearity without any pressure-frequency hysteresis. Sensitivity of the sensor was 145.5 kHz/mmHg and accuracy was less than 2 mmHg. Real-time heart beat measurement was executed with a developed hand-held measurement system. Possibility of real-time blood pressure measurement was showed with simulated artery system. After installation of the sensor on skin above radial artery, simple real blood pressure measurement was performed with 64 mmHg blood pressure variation.

A Design of Low Profile Ku Band Parabolic Antenna using Elliptical Reflector Shape (타원 반사면 구조를 이용한 Low Profile Ku밴드 파라볼라 안테나의 설계)

  • Ryu, Daun;Lee, Kyung-Soon;Park, Dae-Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.466-471
    • /
    • 2017
  • SOTM is a device for the satellite communication on the move. Many studies are conducted on microstrip, waveguide and array antenna for the low profile of the SOTM's antenna. But those antennas have a problem that is difficult to adjust the polarization, and for that reason we have studied the parabolic antenna structure. The general form of parabolic reflector structure is circular, but we used cut-off shape reflector by cutting the upper and lower reflector for low profile antenna. Accordingly, this results in the decrease of reflector area which causes reduced gain and G/T ratio. In order to solve this problem, we have transformed and designed the sub reflector for improving the efficiency and gain of the cut- off shape parabolic antenna.

A Study on Wearable GPS Antenna Integrated into Garment (의복에 실장되는 웨어러블 GPS 안테나에 대한 연구)

  • Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.623-627
    • /
    • 2014
  • In recent years, wireless communication technologies in human body have received an increasing attention and the research on an antenna that can be worn also has been actively conducted. In this paper, an wearable antenna that can receive GPS signal frequency is proposed. The antenna was manufactured by using a copper polyester fabric with thickness of 0.08mm as a radiator and a ground plate, and a goatskin with thickness of 0.7mm as dielectric substrate. Cutting edges placed in diagonal direction of square patch in order to obtain a circular polarization characteristic, and the conductive cloth and leather was laminated by using a conductive epoxy. First, goatskin dielectric constant was obtained through the simulation and measurement of resonance frequency of the three square patch antennas with different size. On the basis of the results, an antenna operating in the GPS band was designed and the performance of the antenna was validated by making the experiment. The change of the characteristic of the antenna that is located on the shoulder parts of the clothing and wearing person were measured. And it was confirmed that the reception sensitivity has a similar level as compared to the commercially produced ceramic GPS antenna.

The features of pattern structure in the raglan sleeve as observed in modern fashion (현대 패션에 나타난 래글런 슬리브의 패턴구성 특징에 관한 연구)

  • Shin, Jang-Hee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.4
    • /
    • pp.95-104
    • /
    • 2018
  • This study classified the figurative features of the raglan sleeves presented in the Spring and Summer Collections and Fall and Winter Collections abroad in 2010 and 2018 and analyzed the production methods and patterns of the classified raglan sleeves. The analysis results are described below. The raglan sleeves in the latest fashion trends were classified into Type H, Type A, Type O and Type Y per shape. The production features of raglan sleeves in the latest fashion trends included the cutting lines in various shapes, a flounce that made shoulders look wider, and decorations such as gathers, studs, punching, slits, pleats and tucks. The raglan sleeve design was classified into Yoke Raglan, Armhole Princess Raglan, Semi Raglan, Gathered Raglan, Pleats Raglan, Cowl Raglan, Origami Raglan, Circular Curved Raglan, Capes Raglan and Constructive Design Raglan and the patterns per design were presented. For creative and experimental clothing by the analysis of the features of raglan sleeve structure, a variety of configuration methods need to be developed and implemented. The analysis results of this study will contribute to the development of the fashion industry through small quantity batch production pursuing unique styles as the basis for further study on the configuration methods of raglan sleeves. This study will be used in various ways as education materials on sleeve patterns in the educational field. Through the analysis of sleeve patterns, this study tries to provide basic data for planning the design of raglan sleeves and helping to diversify the ladies' apparel market in the future.

  • PDF

A Study on the Zero Waste Fashion Design in Conscious Fashion Perspective from the New Normal Era (뉴노멀 시대의 컨셔스 패션에 나타난 제로웨이스트 패션디자인 연구)

  • Dal A Lee;Chan Ho Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.4
    • /
    • pp.59-76
    • /
    • 2023
  • The COVID-19 pandemic has brought about environmental severity and new social, economic, and cultural changes. Conscious fashion, which is oriented to sustainable and valuable consumption, has become a trend to consume products produced using eco-friendly and ethical processes, from the selection of the product materials to the manufacturing process. The purpose of this study is to identify the concepts and characteristics of conscious fashion and zero waste, and to explore design trends of zero wastein the new normal era of conscious fashion through the analysis of various cases. The research method is a literature review on conscious fashion based on relevant professional and academic books and articles, designer collections, and campaigns from 2010 to the present, when conscious fashion as eco-friendliness and sustainable fashion became a trend. The concept and characteristics of conscious fashion were examined them in terms of environmental, ethical, social, and cultural aspects and the concept and characteristics of zero waste through previous studies and case analysis. Through this, the trends of zero-waste design in conscious fashion were categorized into: first, an eco-friendly design orientation that utilizes reuse and reduce methods of clothing and fabric; second, a variable design orientation that practices zero waste designs by using diversity of patterns through deconstruction, disassembly, and various cutting methods. Third, long-term circulation of design through the recycling of resources by second-hand trade, the utilization of stock clothing, resale, and availability of eco-friendly materials through the development of new technologies. As an active practice for the sustainable fashion industry expands, it is expected that continuous research will be conducted as a future core value to realize the possibility of long-term circular zero-waste design through social responsibility and conscious recycling, reuse, and reproduction.

A Study on the Cutting Optimal Power Requirements of Fast Growing Trees by Circular Saw (원형톱에 의한 속성수 절단 적정 소요동력 산정에 관한 연구)

  • Choi, Yun Sung;Kim, Dae Hyun;Oh, Jae Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.402-407
    • /
    • 2014
  • In this study, Italy poplar(Populus euramericana) was selected for test specimen to measure cutting power when it harvested. The experiment has been controlled as three levels of feed rate (0.41, 1.25 and 2.5 m/s), sawing speed (800, 1,000 and 1,200 rpm), and the five levels of root collar diameter (50, 70, 90 and 110, 130 mm). The harvested volume after 3 years (root collar diameter 50 mm) was 10.5 tons, which falls short of the target amount of biomass is 20~30 ton/ha. In addition, the biomass amount of diameter 90 and 110 mm which reached the target amount were estimated to be 23.5 and 32.5 ton/ha respectively. As a result of experiment, it was found out that power of 128.2 and 175.8 W are consumed in case of cutting with the feed rate of 0.41m/s and minimum sawing speed (800 rpm) respectively. With the working area of 0.3 ha/h, it is considered to present working capacities of 16.5 and 22.8 ton/h respectively. The power consumed at the feed rate of 1.25 m/s is estimated to be 113.8 and 153.7W respectively and working capacity in a working area of 1 ha/h is estimated to be 23.5 and 32.5 ton/h. The power consumed at the feed rate of 2.5 m/s is estimated to be 119.8 and 166.9 W respectively and working capacity in a working area of 2 ha/h is estimated to be 47.0 and 65.5 ton/ha respectively. Therefore, the power source of harvest machine at the feed rate of 1.25, 2.50 m/s and sawing speed of 800 rpm shall be selected as it can process the target amount of estimated biomass.

Bending Strength Performance Evaluation of Glass Fiber Cloth Reinforced Cylindrical Laminated Veneer Lumber (직물형 유리섬유로 보강된 원통형 단판적층재의 휨 강도 성능 평가)

  • Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.415-423
    • /
    • 2016
  • Cylindrical laminated veneer lumber (LVL) is produced by winding the veneer tape on a circular cylinder. The veneer tape was produced by cutting the veneer into a rectangular shape and sewing it in a vertical direction to the fiber. The tensile strength test was carried out by producing the veneer tape specimen with different species of veneer, types and combinations of sewing yarn. The Radiata pine veneer tape produced with three sewing lines using the reinforced sewing thread had the best tensile strength. Also, the separation and snapping problems of the veneer tape were improved, resulting in the improvement in the workability of cylindrical LVL. The bending strength of various cylindrical LVL produced with different types of veneer tape and a different number of lamination layers and the application of reinforcement with glass fiber cloth was compared with that of Larix log. Bending MOR of cylindrical LVL reinforced with glass fiber cloth at the volume ratio of 11% was improved by 65% in comparison to the non-reinforced cylindrical LVL. In the case of the cylindrical LVL produced with 2 sewing lines of veneer tape, a fracture occurred at the butt joint between the veneer tapes. However, in the case of the cylindrical LVL produced with 3 sewing lines of veneer tape a fracture occurred in the fiber direction.