• Title/Summary/Keyword: Circular Cutout

Search Result 23, Processing Time 0.02 seconds

Cutout shape and size effects on response of quasi-isotropic composite laminate under uni-axial compression

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.335-348
    • /
    • 2010
  • Cutouts are often provided in structural and aircraft components for ventilation, for access, inspection, electric lines and fuel lines or sometimes to lighten the structure. This paper addresses the effects of cutout shape (i.e., circular, square, diamond, elliptical-vertical and elliptical-horizontal) and size on buckling and postbuckling response of quasi-isotropic (i.e., $(+45/-45/0/90)_{2s}$) composite laminate under uni-axial compression. The finite element method is used to carry out the investigation. The formulation is based on first order shear deformation theory and von Karman's assumptions are used to incorporate geometric nonlinearity. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. It is observed that for the smaller size cutout area there is no significant effect of cutout shape on load-deflection response of the laminate. It is also concluded that the cutout size has substantial influence on the buckling and postbuckling response of the laminate with elliptical-horizontal cutout, while this effect is observed to be the least in case of laminate with elliptical-vertical cutout.

Stress and strain analysis of functionally graded plates with circular cutout

  • Dhiraj, Vikash Singh;Jadvani, Nandit;Kalita, Kanak
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.81-92
    • /
    • 2016
  • Stress concentration is an interesting and essential field of study, as it is the prime cause of failure of structural parts under static load. In the current paper, stress and strain concentration factors in unidirectional functionally graded (UDFGM) plate with central circular cutout are predicted by carrying out a finite element study on ANSYS APDL platform. The present study aims to bridge the lacuna in the understandings of stress analysis in perforated functionally graded plates. It is found that the material variation parameter is an important criterion while designing a perforated UDFGM plate. By selecting a proper material variation parameter and direction of material gradation, the stress and strain concentrations can be significantly reduced.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load

  • Sonmez, Mustafa;Aydin Komur, M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.159-174
    • /
    • 2010
  • Elastic buckling load of perforated steel plates is typically predicted using the finite element or conjugate load/displacement methods. In this paper an artificial neural network (ANN)-based formula is presented for the prediction of the elastic buckling load of rectangular plates having a circular cutout. By using this formula, the elastic buckling load of perforated plates can be calculated easily without setting up an ANN platform. In this study, the center of a circular cutout was chosen at different locations along the longitudinal x-axis of plates subjected to linearly varying loading. The results of the finite element method (FEM) produced by the commercial software package ANSYS are used to train and test the network. The accuracy of the proposed formula based on the trained ANN model is evaluated by comparing with the results of different researchers. The results show that the presented ANN-based formula is practical in predicting the elastic buckling load of perforated plates without the need of an ANN platform.

Research on rib-to-diaphragm welded connection by means of hot spot stress approach

  • Wang, Binhua;Lu, Pengmin;Shao, Yuhong
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.135-148
    • /
    • 2015
  • The cutout hole locating at the place of rib-to-diaphragm welded connection is adopted to minimize the restraint, which is caused by the floor-beam web to rib rotation at the support due to the unsymmetrical loads in orthotropic deck. In practice, an inevitable problem is that there is a large number of welding joint's cracks formed at the edge of cutout hole. In this study, a comparative experiment is carried out with two types of cutout hole, the circular arc transition and the vertical transition. The fatigue life estimation of specimens is investigated with the application of the structural hot spot stress approach by finite element analyses. The results are compared with the ones of the fatigue tests which are carried out on these full-scale specimens. Factors affecting the stress range are also studied.

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

Stress Analysis of Composite Laminated Plates with 2 Collinear Circular Cutouts (2개의 원형개구부가 있는 복합재료 적층판의 응력해석)

  • 이윤복;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.223-226
    • /
    • 1999
  • This paper presents the theoretical analysis method to determine the stress concentrations around the circular cutouts with various geometrical parameters. The purposes of this study are to investigate on the stress distribution around the circular cutouts due to interaction between two circular cutouts and to develop the design method in composite plates. The composite laminated plate with 2 equal collinear circular cutouts under inplane loads is treated as an quasi-isotropic, symmetric, finite, square, multiply connected and thin plate. The effects of cutout sizes, distances between two circular cutouts and inplane load conditions on stress distribution are studied in detail.

  • PDF

Free Vibration Analysis of Rectangular Plate with Multiple Circular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 원형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1086-1092
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple circular holes. On the contrary to the case of rectangular plate with multiple rectangular holes, it is very difficult to perform qualitative analysis on natural vibration characteristics because of geometrical inconsistency. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a circular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads

  • Rajanna, T.;Banerjee, Sauvik;Desai, Yogesh M.;Prabhakara, D.L.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.37-55
    • /
    • 2016
  • In this study, the influence of centrally placed circular and square cutouts on vibration and buckling characteristics of different ply-oriented laminated panels under the action of compressive and/or tensile types of non-uniform in-plane edge loads are investigated. The panels are inspected under the action of uniaxial compression, uniaxial tension and biaxial, compression-tension, loading configurations. Furthermore, the effects of different degrees of edge restraints and panel aspect ratios are also addressed in this work. Towards this, a nine-node heterosis plate element has been adopted which includes the effect of shear deformation and rotary inertia. According to the results, the tensile buckling loads are higher than that of compressive buckling loads. However, the tensile buckling load continuously reduces with the increased cutout sizes irrespective of ply-orientations. This is also true for compressive buckling loads except for some particular ply-orientations with higher sized cutouts.

P-Version Model of Stress Concentration Around a Circular Hole in Finite Strips (원공(圓孔)을 갖는 유한판(有限板)의 응력집중(應力集中)에 대한 P-Version 모델)

  • Woo, Kwang Sung;Lee, Chae Gyu;Yun, Young Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.1-8
    • /
    • 1992
  • This paper presents a p-version finite element approach for modeling the stress distribution around a circular hole in a finite strip subjected to membrane and flexural behaviors. Also, same problem with a crack emanating from a perforated tension strip was solved by virtual crack extension method. The p-version of the finite element method based on integrals of Legendre polynomials is shown to perform very well for modeling geometries with very steep stress gradients in the vicinity of a circular cutout. Here, the transfinite mapping technique for circular boundaries was used to avoid the discretization errors. The numerical results from the proposed scheme have a good comparison with those by Nisida, Howland, Newman etc. and the conventional finite element approach.

  • PDF