• Title/Summary/Keyword: Circular Column

Search Result 327, Processing Time 0.025 seconds

Experimental Study on the Behavior of Psudo Circular Concrete Column (원형기둥 콘크리트 구멍손실 단면적의 압축거동에 관한 축소모델 실험적 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.89-98
    • /
    • 2001
  • There have been a lot of studies about repair & strengthening of the concrete structure. But there has almost not been my study on section damage effect due to holes drilled out for installing additional facilities or equipment, such as rack on the wall of building or underground culvert system, plumbing system through the column or wall of it, after being occupied. This study is to find out how much the section loss due to holes will give loss of section strength. We cm determine if we repair or reinforce it completely or not, using strength loss from the hole. Hole size of diameter 3cm, 2cm, lcm, depth of 3cm, 5cm, 10cm, and position of each hole has been considered as variables of this study. It is concluded that section loss 30% results in 53% of strength damage.

  • PDF

The Vibration Performance Experiment of Tuned Liquid Damper and Tuned Liquid Column Damper

  • Kim Young-Moon;You Ki-Pyo;Cho Ji-Eun;Hong Dong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.795-805
    • /
    • 2006
  • Tuned Liquid damper and Tuned Liquid Column are kind of passive mechanical damper which relies on the sloshing of liquid in a rigid tank for suppressing structural vibrations. TLD and TLCD are attributable to several potential advantages - low costs ; easy to install in existing structures : effective even for small-amplitude vibrations. In this paper, the shaking table experiments were conducted to investigate the characteristics of water sloshing motion in TLD (rectangular, circular) and TLCD. The parameter obtained from the experiments were wave height, base shear force and energy dissipation. The shaking table experiments show that the liquid sloshing relies on amplitude of shaking table and frequency of tank. The TLCD was more effective control vibration than TLD.

Numerical study of internally reinforced circular CFT column-to-foundation connection according to design variables

  • Kim, Hee-Ju;Ham, Junsu;Park, Ki-Tae;Hwang, Won-Sup
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.445-452
    • /
    • 2017
  • This study intends to improve the structural details of the anchors in the conventional CFT column-to-foundation connection. To that goal, finite element analysis is conducted with various design variables (number and embedded length of deformed bars, number, aspect ratio, height ratio and thickness ratio of ribs) selected based upon the results of loading test and strength evaluation. The finite element analysis is performed using ABAQUS and the analytical results are validated by comparison with the load-displacement curves obtained through loading test applying axial and transverse loads. The behavioral characteristics of the numerical model according to the selected design variables are verified and the corresponding results are evaluated.

Seismic Performance Assessment of RC Circular Column-Bent Piers Subjected to Bidirectional Quasi-Static Test (이축방향 유사정적 실험에 의한 이주형 철근콘크리트 원형 교각의 내진 성능평가)

  • Chung Young Soo;Park Chang Kyu;Lee Beom Gi;Song Hee Won
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.121-128
    • /
    • 2005
  • A RC column-bent pier represents one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent-piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. One single column specimen was additionally made to comparatively evaluate the seismic response of RC column-bent piers. Test parameters are different transverse reinforcement and loading pattern. These piers were tested under lateral load reversals with the axial load of $0.1 f_{ck}A_g$. Three specimens were subjected to bidirectional lateral load cycles which consisted of two main longitudinal loads and two sub transverse loads in one load cycle. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter three specimens were generally bigger than those of the former three specimens. Plastic hinges were formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom plastic hinge of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

Evaluation of Minimum Spiral Reinforcement Ratio of Circular RC Columns (철근콘크리트 원형기둥의 나선철근 최소철근비에 대한 평가)

  • Kim, Young-Seek;Kim, Hyeong-Gook;Park, Cheon-Beom;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • Spiral reinforcement in a circular column plays an effective role in the ductile behavior of a column through position fixing and buckling restraining of the longitudinal reinforcement, and confining core-concrete. Each country has suggested the minimum volumetric ratio of spiral reinforcement in order to secure the ductility of concrete columns. The minimum volumetric ratio of spiral reinforcement suggested by ACI 318-14 and the national concrete structure design standard was developed based on the theory of Richard et al. (1928); furthermore it has been used until now. However, their theory cannot consider the effects of high strength concrete and high strength reinforcement, and arrangement condition of the spiral reinforcement. In this study, a modified minimum volumetric ratio equation is suggested, which is required to improve the ductility of reinforced concrete circular columns and to recover their stress. The modified minimum volumetric ratio equation suggested here considers the effect of the compressive strength of concrete, the yield strength of spiral reinforcement, the cross sectional area of columns, the pitch of spiral reinforcements and the diameter of spiral reinforcement. In this paper, the validity of the minimum volumetric ratios from ACI 318-14 and this study was investigated and compared based on the results of uniaxial compression experiment for specimens in which the material strength and the spiral reinforcements ratio were used as variables. In the end of the study, the modification method for the suggested equation was examined.

Evaluation of Suction Installation for the Circular Pipe into Low-water Sandy Ground via Model Test (모형실험을 활용한 저수심 사질토 지반에서 원형강관 설치 석션압 평가)

  • Xin, Zhen-Hua;Kim, Jae-Hyun;Lee, Ju-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, a circular pipe can be installed by suction pressure for construction on soft ground with a low-water level. A series of laboratory-scale model tests were conducted in sandy ground to comprehend the suction pressure of the circular pipe in low-water levels. For repeated tests on saturated sandy soil, a container was mounted with three vibration generators on the floor. A repetitive vibration was applied using the vibration system for ground compaction. In the model tests, different diameters and thicknesses on saturated sandy soil with a water depth were considered. The result showed that the suction pressure increased with increasing penetration depth of the circular pipe. Moreover, the suction pressure required to penetrate the pipe decreased with increasing diameter. In the low-water level, the total suction pressure measured at the top lid increased because additional suction pressure is required to lift the water column. On the other hand, this led to a decrease in suction pressure to penetrate the circular pipe because the weight of the water column is applied as a dead load. Therefore, it is necessary to consider the water level to design the required suction pressure accurately.

Seismic performance of the thin-walled square CFST columns with lining steel tubes

  • Wang, Xuanding;Liu, Jiepeng;Wang, Xian-Tie;Cheng, Guozhong;Ding, Yan
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.423-436
    • /
    • 2022
  • This paper proposes an innovative thin-walled square concrete filled steel tubular (CFST) column with an octagonal/circular lining steel tube, in which the outer steel tube and the inner liner are fabricated independently of each other and connected by slot-weld or self-tapping screw connections. Twelve thin-walled square CFST columns were tested under quasi-static loading, considering the parameters of liner type, connection type between the square tube and liner, yield strength of steel tube, and the axial load ratio. The seismic performance of the thin-walled square CFST columns is effectively improved by the octagonal and circular liners, and all the liner-stiffened specimens showed an excellent ductile behavior with the ultimate draft ratios being much larger than 1/50 and the ductility coefficients being generally higher than 4.0. The energy dissipation abilities of the specimens with circular liners and self-tapping screw connections were superior to those with octagonal liner and slot-weld connections. Based on the test results, both the finite element (FE) and simplified theoretical models were established, considering the post-buckling strength of the thin-walled square steel tube and the confinement effect of the liners, and the proposed models well predicted the hysteretic behavior of the liner-stiffened specimens.

The combined reinforcement to recycled aggregate concrete by circular steel tube and basalt fiber

  • Zhang, Xianggang;Zhang, Songpeng;Chen, Xu;Gao, Xiang;Zhou, Chunheng
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.323-334
    • /
    • 2022
  • In order to study the axial compression performance of basalt-fiber reinforced recycled concrete (BFRRC) filled circular steel tubular short columns, the axial compression performance tests of seven short column specimens were conducted to observe the mechanical whole-process and failure mode of the specimens, the load-displacement curves and the load-strain curves of the specimens were obtained, the influence of design parameters on the axial compression performance of BFRRC filled circular steel tubular short columns was analyzed, and a practical mathematical model of stiffness degradation and a feasible stress-strain curve equation for the whole process were suggested. The results show that under the axial compression, the steel tube buckled and the core BFRRC was crushed. The load-axial deformation curves of all specimens show a longer deformation flow amplitude. Compared with the recycled coarse aggregate (RCA) replacement ratio and the basalt fiber dosage, the BFRRC strength has a great influence on the peak bearing capacity of the specimen. The RCA replacement ratio and the BFRRC strength are detrimental to ductility, whereas the basalt fiber dosage is beneficial to ductility.

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen;Yuxin Cao;Ye Yao
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.

Seismic Performance Evaluation of SRC Column by Quasi-Static Test (준정적 실험에 의한 SRC 합성교각의 내진성능 평가)

  • Han, Jung-Hoon;Park, Chang-Kyu;Shim, Chang-Su;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.85-94
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is the most important factor. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcements such as hoop ties closely. Using core steel composite columns is useful as one of the reinforcing RC columns. In this paper, quasi-static tests on concrete encased composite columns with single core steel or multiple steel elements were performed to investigate the seismic performance of the composite columns. Eight concrete-encased composite specimens were fabricated. The cross-sections of these specimens are composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcements, type and number of encased steel member. Through the tests, it was evaluated the ductility of SRC composite specimens. It has become clear from the test results that encased steel elements makes the deformation capacity of the columns to be larger. The displacement ductility and lateral strength of specimen with concrete-encased circular tube were indicated the biggest value.