• Title/Summary/Keyword: Circuit short

Search Result 1,674, Processing Time 0.034 seconds

A Novel AC Solid-State Circuit Breaker with Reclosing and Rebreaking Capability

  • Kim, Jin-Young;Choi, Seung-Soo;Kim, In-Dong
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1074-1084
    • /
    • 2015
  • These days, the widespread use of sensitive loads and distributed generators makes the solid-state circuit breaker (SSCB) an essential component in power circuits to achieve a high power quality for AC Grids. In traditional AC SSCB using SCRs, some auxiliary mechanical devices are required to make the reclosing operation possible before fault recovery. However, the proposed AC SSCB can break quickly and then be reclosed without auxiliary mechanical devices even during the short-circuit fault. Moreover, its fault current breaking time is short and its SSCB reclosing operation is fast. This results in a reduction of the economic losses due to fault currents and power outages. Through simulations and experiments on short-circuit faults, the performance characteristics of the proposed AC SSCB are verified. A design guideline is also suggested to apply the proposed AC SSCB to various AC grids.

Development of Estimation Model Are Stability Considering Arc Extinction with Multiple Regression Analysis in $CO_2$ Arc Welding ($CO_2$ 아크 용접에 있어서 다중회귀분석에 의한 아크 끊어짐을 고려한 아크 안정성 예측 모델 개발)

  • Gang, Mun-Jin;Lee, Se-Heon;U, Jae-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1885-1898
    • /
    • 2000
  • Welding quality is closely related to the arc state. So, it is very important to estimate the arc state in real time. In the short circuit transfer region of CO2 are welding, the spatter , as it is well known, is mainly generated on an instance of short circuit or on an instance that the are is ignited after short circuit, or on the cases of an instantaneous short circuit. If the short circuit period or the arc time is irregular, the spatter is generated more than it is regular. Thus there is a close relationship of the amount of the spatter generation with the arc stability. In this paper, to develop the index for estimating the arc stability in short circuit transfer range Of CO2 arc welding, the welding current and are voltage waveforms were measured and the spatter generated was captured and measured. The correlation analysis of the measured amount of the spatter with the factors (the components and the standard deviations of the components) was performed, and the factors that have a considerable influence on the spatter generation among all factors were selected. And some cases of models consisted of the factors were presented, and a mathematical index model which can make an estimation the amount of the spatter from these models with multiple regression analysis. Also, it was compared how much the amount of the spatter generated under the selected welding conditions do these index models fit, and the index model to estimate the arc stability which represent the spatter generation most appropriately was developed

Relationship between Spatter Generation and Waveform Factors in Transitional Condition of $CO_2$ Welding ($CO_2$ 용접의 천이이행 조건에서 스패터 발생과 파형인자와의 관계)

  • 강봉용;이창한;김희진;장희석
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • $CO_2$ gas shielded arc welding has been characterized with its harsh arc compared to Ar-based shielding gases and with its high level of spattere specially in welding current range of 250~300 amperes. In this range of welding current, the metal transfer mode showed to be changed from short circuit to globular with the increase of welding voltage resulting in so-called the transitional mode in which both modes of transfer appeared together. To characterize the transitional mode, the short circuit events were divided into two groups, i.e. normal short circuit (N.S.C) which has short circuit time $(t_s)$ over 2msec and instantaneous short circuit (I.S.C) of $t_s$$\leq$2msec. The experimental results showed that the number of N.S.C decreased almost linearly with the increase of welding voltage and appeared to be not related with spatter generation rate. However I.S.C became to be pronounced in the transitional condition and its number reached the maximum value at around 29.0 volts. Considering the relation with the spatter generation rate, it was found that the number of I.S.C had a very strong correlation with the spatter generation rate of the transitional condition. It was further demonstrated that spatter generation rate decreased quite linearly with the decrease of I.S.C frequency. It implies that I.S.C is the most important waveform factor controlling the spatter generation of the transitional mode, i.e. in the middle range of welding current. Based on these results, It was discussed that in the transitional mode the basic concept of waveform control for suppressing spatter generation would be different from the one applied for typical short circuit transfer mode of low welding current.

  • PDF

A Study on the Short-circuit Protection System for Learning Teaching Instruction Using Incandescent Light Bulb (백열전구를 이용한 학습 교구용 단락보호장치에 대한 고찰)

  • Hong-yong Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.844-850
    • /
    • 2023
  • Purpose: This paper is about the development of a short-circuit protection power supply device using incandescent bulbs and its application for educational materials. This article, which considers electrical safety and energy conservation at the same time, has many kinds of potential applications for both educational and industrial areas. The above mentioned short-circuit protection power supply device using incandescent bulbs enhances safety and efficiency compared to normal current power supply devices. Additionally, as an educational materials, it can be used for electric safety training, and provides practical electrical safety knowledge on our actual life. Method: Using incandescent bulbs, design new type of short-circuit protection power supply device, and through verifying the function and safety of the device, make new type device, and applying it for an educational tool. Conclusion: This study is to develop new type of power supply device, and verify the possibility of the application for the device as an educational materials. Through this research, show an innovative solution, which contribute to electrical safety and energy conservation, and open the potential possibility on educational and industrial sectors.This kind of research is expected to contributes to enhanced research, and education on electrical safety and energy conservation management.

Development of RCD Auxiliary Trip Device by using High Precision Current Sensor (고정밀 전류센서를 이용한 RCD 보조트립 장치 개발)

  • Kwak, Dong-Kurl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1532-1537
    • /
    • 2009
  • Nowadays the diversity and large-capacity of electric appliances are strong effect on electrical fires augment in an alarming way. But, as the inactive response characteristics of the existing RCD (Residual Current protective Device) used on low voltage power distribution lines, so control of overload and electric short circuit faults, major causes of electrical fires, are not enough. Therefore this paper is confirmed the unreliability of the existing RCD by electrical faults simulation and is proposed a auxiliary trip device of RCD by using a high precision current sensor (namely, reed switch) for the prevention of electrical disasters in low voltage power distribution lines caused by overload or electric short circuit faults. The sensitive reed switch in the proposed ATD (auxiliary trip device) exactly detects the increased magnetic flux with the overload or the short current caused by a number of electrical faults, and then rapidly cuts off the existing RCD. The proposed auxiliary trip device of RCD is confirmed the excellent characteristics in response velocity and accuracy in comparison with the conventional circuit breaker through various operation performance analysis. The proposed ATD can also prevent electrical disaster, like as electrical fires, which resulted from the malfunction and inactive response characteristics of the existing RCD.

The electrical effects of PV cell's short-circuit current difference for PV module application (태양전지의 단락전류 편차가 태양전지모듈에 미치는 전기적인 영향 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.3-4
    • /
    • 2008
  • Photovoltaic module consists of serially connected solar cell which has low voltage characteristics. But, the other way, the whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and 5%. Using Light I-V and Dark I-V measurements, electrical characteristic parameters like Isc(short-circuit current), Voc(open-circuit voltage), Rs(series resistance), Rsh(shunt resistance) are analyzed. PV module of low current characteristics has electrical stress from other modules. And, such a module has a tendency of hot-spot suffering which leads degradation.

  • PDF

Methods for Increasing the Interrupting Performance of Are Chamber in 460V / 50KA / 100AF Molded Case Circuit Breaker (460V / 50KA / 100AF 급 배선용 차단기의 소호부 차단 성능 향상 방법)

  • Cho, Sung-Hoon;Jung, Eui-Hwan;Lee, Han-Ju;Lim, Kee-Joe;Kim, Kil-Sou
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.105-105
    • /
    • 2010
  • Voltage circuit breakers are widely used in power distribution systems to interrupt fault current rapidly and to assure the reliability of the power supply. Power distribution system requires the transformer with higher capacity than ever, but this ever, but this may be the cause. of the increasing of short circuit current in contrast to conventional one when short-circuit accident is occurred. Therefore molded case circuit breaker improved in aspects of interrupting capacity of short circuit current in this system is needed. By using the proposed methods in this paper, such as new arc quenching structure of grid would contribute to minimizing the MCCB, realization of high interrupting performance and reducing the design time and development cost.

  • PDF

Analysis and optimization of Wiel-Dobke synthetic testing circuit parameters (Weil-Dobke 합성단락 시험회로의 Parameter 분석과 최적화)

  • Kim, Maeng-Hyun;Rhyou, Hyeong-Kee;Park, Jong-Wha;Koh, Hee-Seog
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.623-627
    • /
    • 1995
  • This paper describes analysis and optimization of Weil-Dobke synthetic testing circuit parameters, which is efficient and economical test method in high capacity AC circuit breaker. In this paper, analysis of synthetic short-circuit test circuit parameter proposed nondimensional factor that is reciprocal comparison value of circuit parameter and is not related to rated of circuit breaker, in particular, this study induce minimization of required energy of critical TRV generation specified in IEC 56 standards and present optimal design of synthetic short circuit testing facilities.

  • PDF

An Experimental Study on Short Circuit Characteristics by the Interior Wiring Length (옥내배선 길이에 따른 단락 특성의 실험적 연구)

  • Song, J.Y.;Kim, J.P.;Cho, Y.J.;Choi, D.M.;Oh, B.Y.;Kil, G.S.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.38-42
    • /
    • 2012
  • This paper describes electrical fire on residential environment such as apartment and detached house caused by defect of interior wiring. We carried out experimental study on short circuit characteristics by the interior wiring length. We were measured arc current, arc energy and interrupting time of earth leakage current circuit breaker(ELB), when an interior wiring break out short circuit in residential environment. From the experiment results, the longer of the interior wiring, the magnitude of arc current decreased and the interrupting time of ELB increased. When applied the A maker's ELB, the strength of arc current and interrupting time of ELB was 254 A and 245 ms respectively at 30 m interior wiring length. In 3 m interior wiring length, arc current and interrupting time was 716 A and 4.24 ms respectively. Arc energy was dependent on the magnitude of arc current and the interrupting time of ELB, the longer the interrupting time, arc energy increasing. In this paper, minimum arc energy was 277 J using C maker's ELB and 3 m interior wiring length(arc current 283 A, interrupting time of breaker 6.28 ms). Therefore in the residential environment, short circuit caused by defect of the interior wiring lead to electrical fire.

A Study on the Adapting for Interrupting Capacity Augmentation of Circuit Breaker (차단기의 차단합성성대기적에 관한 연구)

  • 황석영;조무제
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.8
    • /
    • pp.299-309
    • /
    • 1984
  • This paper proposes the adapter for interrupting capacity augmentation of circuit breaker which can be applied in case of shortage in a existing circuit breaker's interrupting capacity due to utility system extension. The adapter utilizes two winding type of reactor instead of single winding type of reactor and the control of 2ry circuit is excuted by a triac interlocked with the system protective relays actuation so as to cut out the reactor by short circuit of the 2ry winding in normal situation and to cut in the reactor by open circuit of the 2ry winding in abnomal situation such as short circuit accident. As a result of the theoritical analysis and experiment, it is proved that the adaptor can reduce the voltage crop and iron loss due to the reactor signigicantly in normal system condition and do a role of reactor upon the power system accident.