• Title/Summary/Keyword: Circuit Breaker

Search Result 689, Processing Time 0.029 seconds

Safely Improving Method to Zero-Harmonics Current with 4-Pole Low Voltage Circuit Breaker Equipped N-phase Trip Device (4극 저압차단기 N상 Trip장치를 사용한 영상고조파 안전성 개선방안)

  • Ki, Che-Ouk;Kim, Ju-Chul;Choi, Chang-Kyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.458-461
    • /
    • 2009
  • In 3-phase 4 wire system, appearance of the $3^{rd}$ harmonic current by increasing non-liner load is the one of causes overheating neutral wire of power line, and apparatus. So it is necessary to protect power-factor decreasing by the $3^{rd}$ harmonic, and electric power apparatus, and line safely, in this study, power system accidents caused by the $3^{rd}$ harmonic were investigated, then harmonic components analysis and unbalanced load analysis got accomplished. As result, we proposed the method to protect the power line and apparatus from over-current of neutral line by using the most economic 4-pole low voltage circuit breaker.

  • PDF

Study on Application of Superconducting Fault Current Limiter Considering Risk of Circuit Breaker Short-Circuit Capacity in a Loop Network System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1789-1794
    • /
    • 2014
  • This paper suggests an application method for a superconducting fault current limiter (SFCL) using an evaluation index to estimate the risk regarding the short-circuit capacity of the circuit breaker (CB). Recently, power distribution systems have become more complex to ensure that supply continuously keeps pace with the growth of demand. However, the mesh or loop network power systems suffer from a problem in which the fault current exceeds the short-circuit capacity of the CBs when a fault occurs. Most case studies on the application of the SFCL have focused on its development and performance in limiting fault current. In this study, an analysis of the application method of an SFCL considering the risk of the CB's short-circuit capacitor was carried out in situations when a fault occurs in a loop network power system, where each line connected with the fault point carries a different current that is above or below the short-circuit capacitor of the CB. A loop network power system using PSCAD/EMTDC was modeled to investigate the risk ratio of the CB and the effect of the SFCL on the reduction of fault current through various case studies. Through the risk evaluations of the simulation results, the estimation of the risk ratio is adequate to apply the SFCL and demonstrate the fault current limiting effect.

Study to Application of Controlled Switching HVAC Circuit Breaker in KEPCO Grid (개폐제어형 초고압차단기의 해외적용사례와 한전계통 적용검토)

  • Oh, Seung-Ryle;Kwak, Joo-Sik;Jeong, Moon-Gyu;Han, Ki-Seon;Goo, Sun-Geun;Ju, Hyoung-Jun;Park, Min-Hae;Kim, Hyun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.433-434
    • /
    • 2015
  • Dictionary meaning of circuit-breaker is a mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short circuit. and it had been recognized as being operated simultaneously. Controlled Switching System(CSS), which is technology for individual pole operation, are widely used to reduce transient phenomenon, for example switching surges, inrush current, for a all switching cases and nowadays it have become and economical solution for a switching place. The conventional solution to these problem is the use of pre-insertion resistors of $520{\Omega}$. However, it is recognised that the cost for products and maintenance are expensive and this apparatus makes more complex the circuit-breaker mechanism. Korea Electric Power Cooperation (KEPCO) has been study for relevant CCS technology since pilot application in substation in 2003 and plan to apply the actual power grid in 2017. This paper deals with the investigation of international CCS operation status and preview for application in KEPCO power grid.

  • PDF

Exchanging of old electrical equipment and discussion of SCADA system's operation related with exchanging of old electrical equipment (노후전력설비 교체에 따른 SCADA시스템의 운용 고찰)

  • Kim, Youn-Sik;Park, Rai-Hyug;Lee, Gi-Seung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.417-422
    • /
    • 2008
  • The DC high speed circuit breaker used in Seoul Metro for line no.1.2 is Japan HITACHI and FUJI breaker, and for line no.3.4 is Whipp & Bourne MM74 breaker from UK. The years that each breakers made are 1973(line no.1), 1984(line no.3.4), So that equipments are superannuated. Nowday the for equipment exchanging is executing, equipment for exchanging were used the Secheron breaker from Swiss. but now the Intec breaker made in Korea is used. The RTU of supervisory control and data acquisition system have the capabilities that can observe, control and work the installation efficiently. In this paper, as summarizing the solving process of problem that happened the SCADA system when old-equipment exchange and concerned point for logical supervision and control of reservation factors and equipment, I'll provide the direction that can do receiving-process of control-equipment, progressed with the exchange of old-electronic equipment.

  • PDF

The Study on the Characteristics of Leakage Circuit Breakers in Protection of the Low Voltage Electrical Apparatus (저압전기기기의 보호를 위한 전류동작형 누전차단기의 특성에 관한 연구)

  • 김은배;오철수
    • 전기의세계
    • /
    • v.25 no.4
    • /
    • pp.59-62
    • /
    • 1976
  • This study on the characteristics of the leakage circuit breakers handles the rolls of each itemized parts of the mentioned apparatus and their influence in determining of the characteristic curve of leakage circuit breaker. Furthermore the differential current transforms in the mentioned apparatus for detecting the fault is handled as a heavy point.

  • PDF

Assessment of Stability of Stability of Hydraulic Breaker Cylinder and Piston through Thermal-Structural coupled Field Analysis by Finite Element Method (유한요소법을 이용한 유압브레이커 Cylinder와 Piston의 열-구조 연성해석을 통한 안정성 평가)

  • Lim, Dong-Wook;Park, Yoon-Soo;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2018
  • This study proves the causes of cylinder and piston jam by scratches which is the fatal problem of hydraulic breaker through the thermal analysis and thermal-structural coupled field analysis. The trouble from the scratch is a complex problem which can be caused by manufacturing process (this is an internal factor) and the users mistake or contamination in the hydraulic circuit (these are an external factor). Hence, it's not easy to investigate the causes, also hard to prevent the recurrence. In this reason, hydraulic breaker manufacturers are trying to improve the manufacturing process such as machining, heat treatment, grinding, cleaning, also to prevent the contamination in hydraulic circuit and to remove the remains. It's being managed thoroughly by manufacturers. This study shows the effect of the temperature rise by the frictional heat generated when the piston hits the tool on the hydraulic oil while the hydraulic breaker is operating, also the temperature distribution when it starts to affect main components of hydraulic breaker. The stress and the amount of deformation also could be found through thermal-structural coupled field analysis. It proved that the stress and deformation are proportionally increased according to the temperature rise in hit area, and it affects the cylinder and the viscosity of hydraulic oil inside the cylinder when it heats up beyond the certain temperature.

Evaluation Method I of the Small Current Breaking Performance for SF(sub)6-Blown High-Voltage Gas Circuit Breakers (초고압 $SF_6$ 가스차단기의 소전류 차단성능 해석기술 I)

  • 송기동;이병운;박경엽;박정후
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.331-337
    • /
    • 2001
  • With the increasing reliability of analysis schemes and the dramatically increased calculating speed, the computer simulation has become and indispensable process to predict the interruption capacity of circuit breakers. Generally, circuit breakers have to possess both the small current and large current interruption abilities and the circuit breaker designers need to evaluate its capacities to save the time and the expense. The analysis of small current and the large current interruption performances have been considered separately because the phenomena occurring in a interrupter are quite different. To analyze the dielectric recovery after large current interruption many physical phenomena such as heat transfer, convection and arc radiation, the nozzle ablation, the ionization of high temperature SF(sub)6 gas, the electric and themagnetic forces and so forth mush be considered. However, in the analysis of small current interruption performance only the cold gas flow analysis needs to be carried out because the capacitive current is to small that the influence from the current can be neglected. In this paper, an empirical equation which is obtained from a series of tests to estimate the dielectric recovery strength has been applied to a real circuit breaker. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

Dead Operation Characteristics of Earth Leakage Circuit Breaker Caused by Impulse Voltages (임펄스전압에 대한 누전차단기의 부동작 특성)

  • Lee, Bok-Hee;Chang, Sug-Hun;Lee, Seung-Chil
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1715-1717
    • /
    • 1997
  • This paper deals with the dead operation characteristics of the earth leakage circuit breaker(ELB) caused by impulse voltages. The surge protective devices for electronic circuit and AC power lines are becoming more widely used. It is possible to give rise to the malfunction of ELB due to the operation of surge protective devices, and the interruption of AC power lines brings about several disadvantages such as low reliability of electronic and informational systems, economical loss, and etc. The dead operation characteristics of the ELB from impulse voltages were measured under the conditions of KS C 4613 and the test circuit with a varistor. As a result, the peak current value of the zero-phase sequence circuit of the ELB is increased as the surge voltage and stray capacitance increase. All of the ELBs used in this work were satisfied with the lightning impulse dead operation test condition defined in KS C 4613. However one specimen only did not cause dead operation in the condition of the test circuit with a varistor. There is high possibility that a large portion of the ELBs connected with the AC power lines having the surge protective devices bring about the dead operation.

  • PDF

Development of Prevention Apparatus for Short-Circuit Faults Using the Line Voltage Drop of Neutral Wire (중성선 선로 전압강하를 이용한 단락사고 방지용 보호장치 개발)

  • Kwak, Dong-Kurl;Kim, Jin-Hwan;Lee, Bong-Seob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1953-1958
    • /
    • 2012
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The occurrence factor of the fire is electric arc or spark accompanied with such electric faults, specially short circuit faults. Earth Leakage Circuit Breaker (ELB) and Molded_case Circuit Breaker (MCCB), that is, Residual Current Protective Devices (RCDs) used on low voltage distribution lines cut off earth leakage and overload, but the RCD can not cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied in low voltage distribution panel are prescribed to rated breaking time about 30ms(KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To improve such problem, this paper proposes a prevention apparatus using the line voltage drop of neutral wire and some semiconductor switching devices. Some experimental tests of the proposed apparatus confirm the validity of the analytical results.

A study on the application of HTS-FCL in Korean Customer Power System (국내 수용가계통에서의 초전도한류기 적용가능성 검토)

  • Lee Seung-Ryul;Kim Jong-Yul;Yoon Jae-Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.44-49
    • /
    • 2004
  • As the load density of KEOCO system is higher, the fault current can be much higher than SCC(Short Circuit Capacity) of circuit breaker. Fault current exceeding the rating of circuit breaker is a very serious problem in high density load area, which can threaten the stability of whole power system. Even though there are several alternatives to reduce fault current, as the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductivity Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. This study presents the application of 154kV HTS-FCL in Korean power system.