• Title/Summary/Keyword: Circuit

Search Result 17,001, Processing Time 0.045 seconds

DC Superconducting fault current limiter characteristic test with a DC circuit breaker

  • So, Jooyeong;Choi, Kyeongdal;Lee, Ji-kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.19-23
    • /
    • 2021
  • We have studied the breaking system that combines a resistive superconducting fault current limiter (SFCL) and a DC circuit breaker for DC fault current. To verify the design of the 15 kV DC SFCL, which was driven from the previous work, a 500 V DC system was built and a scale-down SFCL were manufactured. The manufactured SFCL module was designed as a bifilar coil which is a structure that minimizes inductive reactance. The manufactured SFCL module has been experiment to verify characteristics of the current-limiting performance in the DC 500 V system. Also, the manufactured FCL module was combined with the DC circuit breaker to be experimented to analyze the breaking performance. As a result of the experiment, when SFCL was combined to the DC circuit breaker, the energy dissipation received by the DC circuit breaker was reduced by up to 84% compared to when the DC circuit breaker operates alone. We are preparing methods and experiments for the optimal method for much higher performance as a future work.

Active Short Circuit Control Method to Reduce Overcurrent and Oscillation Current in PMSM (영구자석 동기모터 진동 및 과전류 저감을 위한 능동단락회로 제어 기법)

  • Choi, Jong-Won;Kim, Yoon-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.339-347
    • /
    • 2022
  • This study proposes the mitigation method for overcurrent and oscillation motor current in an active short-circuit operation. This operation is attracting attention as the safe state of electric vehicle traction inverters. However, the active short-circuit operation generates oscillation and overcurrent of motor currents during a transient state. The proposed method uses two different safe states in PMSM, such as active short circuit and freewheeling. The active short circuit is used for safe state in a steady state. To reduce the overshoot and oscillation, a freewheeling state is injected between active short-circuit operation by comparing the motor phase current with an analytically calculated steady-state motor current. Freewheeling state is only used in a transient state. The performance is demonstrated through simulations and experimental results. The peak current of the motor was reduced from 52 A to 40 A, and oscillation time was reduced.

Pyro Squib Circuit Design with Stable Constant Current Driving Method (안정적인 정전류 구동 방식의 파이로 스퀴브 회로 설계)

  • Soh, KyoungJae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.545-551
    • /
    • 2022
  • We proposed a design method for constant current pyro squib circuit. The current method using N MOSFET for the stability problem has a weakness of the current change, requiring a new design. This paper identified the problem with conventional squib circuit where the current is reduced by 25 % when maximum resistance is 3 ohms. Thus, we proposed a stable constant current driving circuit using P MOSFET and PNP BJT. We confirmed stable constant circuit operation through simulations and measurements of the proposed circuit design where the current did not change until the resistance reached 3 ohms.

Design of High Performance Full-Swing BiCMOS Logic Circuit (고성능 풀 스윙 BiCMOS 논리회로의 설계)

  • Park, Jong-Ryul;Han, Seok-Bung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.1-10
    • /
    • 1993
  • This paper proposes a High Performance Full-Swing BiCMOS (HiF-BiCMOS) circuit which improves on the conventional BiCMOS circuit. The HiF-BiCMOS circuit has all the merits of the conventional BiCMOS circuit and can realize full-swing logic operation. Especially, the speed of full-swing logic operation is much faster than that of conventional full-swing BiCMOS circuit. And the number of transistors added in the HiF-BiCMOS for full-swing logic operation is constant regardless of the number of logic gate inputs. The HiF-BiCMOS circui has high stability to variation of environment factors such as temperature. Also, it has a preamorphized Si layer was changed into the perfect crystal Si after the RTA. Remarkable scalability for power supply voltage according to the development of VLSI technology. The power dissipation of HiF-BiCMOS is very small and hardly increases about a large fanout. Though the Spice simulation, the validity of the proposed circuit design is proved.

  • PDF

Long term activity measurement of the primary circuit water on the LVR-15 research reactor

  • Ladislav Viererbl;Vit Klupak;Hana Assmann Vratislavska
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1250-1253
    • /
    • 2024
  • Activity measurement of the primary circuit water of fission reactors is one method that can provide early detection of a damaged fuel assembly in the reactor core. This is an important aspect in the safe operation of the reactor and for radiation protection of staff. Radionuclides in the primary circuit water are produced by the activation of stable nuclides and the fission of fissile nuclides, mainly the isotope 235U. In the LVR-15 research reactor, measurement of the activity of the primary circuit water has been regularly undertaken since 1996. A water sample is taken from the primary circuit every week and the activities are measured four days later using gamma spectrometry. The results of these long-term measurements from 1996 to 2022 are presented. The activity time dependences of the individual radionuclides are discussed in relation to fuel assembly damage and for events connected to contamination of the water by objects inserted into the primary circuit during experiments carried out near the reactor core.

Hierarchical Timing Analysis considering Global False Path

  • Sunik Heo;Kim, Juho
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.235-237
    • /
    • 2002
  • As the integrated circuit technology gets developed, a circuit size of more than thousands of transistors becomes normal. A hierarchical design is unavoidable due to a huge circuit size. It is important how we can consider hierarchical structure in circuit delay analysis. In this paper we present an accurate method to analyze the delay of circuit with hierarchical structure. Adding the notion of global false path to the hierarchical timing analysis performs more accurate timing analysis.

  • PDF

A New Energy Recovery Snubber for Boost Converter (부스트 컨버터용 새로운 에너지재생 스너버)

  • 김만고;김진환
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.124-130
    • /
    • 1997
  • The main switch of high-frequency boost converter may be failed because the high switching current or voltage can damage this switch. The high switching stress can be reduced by snubber circuit. In this paper, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The analysis for proposed circuit is presented, and the validity of the circuit is verified through simulation and experiment.

  • PDF

A Novel Phase Noise Reduction In Oscillator Using PBG(Photonic Band Gap) Structure and Feedforward Circuit

  • Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.204-207
    • /
    • 2005
  • In this paper, PBG structure and feedforward circuit has been used to suppress the phase noise of the oscillator. Microstrip line resonator have low Q, but we can obtain high LO power by feedforward circuit and improve the resonator Q by the PBG, simultaneously. The proposed oscillator which uses PBG and feedforward circuit shows 0${\~}$20 dB phase noise reduction compared to the conventional oscillator. We have obtained -115.8 dBc of phase noise at 100 kHz offset from 2.4 GHz center.

A Low cost Sensorless Control Circuit for Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 염가형 센서리스 제어회로)

  • 양순배
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.434-438
    • /
    • 2000
  • In this paper the low cost sensorless control circuit for a PM synchronous motor without the mechanical rotor position sensors is presented. The sensorless control algorithm and position detection circuit for the sinusoidal current wave drive is more complex than that of the rectangular current wave drive. The proposed position sensing circuit is composed of an operational amplifier and several passive elements. The design procedures for getting the optimal parameters for the position sensing circuit are presented. The performance of the proposed algorithm is verified through the simulations and experiments.

  • PDF

A Contactless Energy Transfer Circuit Using Coreless Low-profile PCB Transformer (코어없는 초박형 PCB 변압기를 이용한 무접점 전력변환 회로)

  • 최병조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.505-508
    • /
    • 2000
  • A coreless printed circuit board(PCB) transformer is employed in a contactless energy transfer circuit that achieves an efficient power conversion at the presence of a considerable airgap between the source and the load side. A half-bridge series resonant converter is selected as the contactless energy transfer circuit in order to minimize the detrimental effects of large leakage inductance small magnetizing inductance and poor coupling coefficient of the coreless PCB transformer. The operation and performance of the proposed contactless power converter are verified on a 7 W experimental circuit that provides an 18V/0.4A output from a 210-370 V input source.

  • PDF