• 제목/요약/키워드: Circadian clock

검색결과 82건 처리시간 0.022초

A Time to Fast, a Time to Feast: The Crosstalk between Metabolism and the Circadian Clock

  • Kovac, Judit;Husse, Jana;Oster, Henrik
    • Molecules and Cells
    • /
    • 제28권2호
    • /
    • pp.75-80
    • /
    • 2009
  • The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.

Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian

  • Lee, Yool;Kim, Kyung-Jin
    • Animal cells and systems
    • /
    • 제16권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Most living organisms synchronize their physiological and behavioral activities with the daily changes in the environment using intrinsic time-keeping systems called circadian clocks. In mammals, the key molecular features of the internal clock are transcription- and translational-based negative feedback loops, in which clock-specific transcription factors activate the periodic expression of their own repressors, thereby generating the circadian rhythms. CLOCK and BMAL1, the basic helix-loop-helix (bHLH)/PAS transcription factors, constitute the positive limb of the molecular clock oscillator. Recent investigations have shown that various levels of posttranslational regulation work in concert with CLOCK/BMAL1 in mediating circadian and cellular stimuli to control and reset the circadian rhythmicity. Here we review how the CLOCK and BMAL1 activities are regulated by intracellular distribution, posttranslational modification, and the recruitment of various epigenetic regulators in response to circadian and cellular signaling pathways.

A Review on Metabolism and Cancer in Relation with Circadian Clock Connection

  • Merlin Jayalal, L.P.
    • 통합자연과학논문집
    • /
    • 제5권3호
    • /
    • pp.198-210
    • /
    • 2012
  • Circadian rhythms govern a remarkable variety of metabolic and physiological functions. Accumulating epidemiological and genetic evidence indicates that the disruption of circadian rhythms might be directly linked to cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of the cell cycle, and alterations in clock function could lead to aberrant cellular proliferation. In addition, connections between the circadian clock and cellular metabolism have been identified that are regulated by chromatin remodelling. This suggests that abnormal metabolism in cancer could also be a consequence of a disrupted circadian clock. Therefore, a comprehensive understanding of the molecular links that connect the circadian clock to the cell cycle and metabolism could provide therapeutic benefit against certain human neoplasias.

체내 시계 유전자 PER1과 PER2의 종양억제자 기능 (Circadian Clock Genes, PER1 and PER2, as Tumor Suppressors)

  • 손범석;도현희;김은기;윤부현;김완연
    • 생명과학회지
    • /
    • 제27권10호
    • /
    • pp.1225-1231
    • /
    • 2017
  • 암을 포함한 다양한 인간의 질병 발생이 circadian clock 유전자의 변형된 발현 양상과 깊은 연관관계를 나타내고 있다. 세포 주기와 세포 성장은 circadian rhythm과 연결되어 있으며, 이를 조절하는 clock 유전자의 비정상적인 발현은 결국 종양 발생과 암의 발달을 유발하게 된다. Circadian clock에 관한 분자적 기전은 다수의 clock activator와 clock repressor의 통합적인 조절에 따른 전사 및 번역이 포함된 음성피드백 고리로 구성되어 있다. 이러한 circadian rhythm의 자동조절 기전에 의해 전체 유전체의 약 10~15%가 전사 수준에서 영향받는 것으로 나타났다. 많은 clock 유전자들 중, Period 1 (Per1)과 Period 2 (Per2)는 clock repressor 유전자로 정상적인 생리적 리듬을 조절하는 것에 기여한다. PER1과 PER2는 cyclin, CDK, CKI를 포함하는 세포 주기 조절자의 발현에 관여함이 밝혀졌으며, 다양한 암에서 PER1과 PER2의 발현 감소가 보고되었다. 따라서, 본 논문에서는 PER1과 PER2의 circadian rhythm에서의 분자적 기능과 종양 발생과 관련된 PER1과 PER2의 하위 표적인자에 대해 살펴보고, 암 치료를 위한 새로운 치료 표적과 암의 예후를 예측하기 위한 분자 지표로써의 PER1과 PER2의 가능성에 대해 서술하고자 한다.

The Regulation of the Testicular Rhythm Coordinated with Circadian Clock Genes

  • Chung, M. K.;Park, Y. J.;K. H. Jung;J. J. Lim;Lee, D. R.;S. J. Yoon;Park, C. E.;T. K. Yoon;Y. G. Chai
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2004년도 춘계학술발표대회
    • /
    • pp.261-261
    • /
    • 2004
  • Circadian rhythms, which measure time about 24 hours, are generated by one of the most ubiquitous and well investigated timing system. More recently, circadian clock gene expression has been reported in various peripheral tissues. If a circadian clock is functioning in the testis, expression of clock genes should be observed in this tissue. To resolve this issue, we examined the expression of circadian clock genes in the testis. (omitted)

  • PDF

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

Circadian Expression of Clock Genes in the Rat Eye and Brain

  • Park, Kyungbae;Kang, Hae Mook
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.285-290
    • /
    • 2006
  • The light sensing system in the eye directly affects the circadian oscillator in the mammalian suprachiasmatic nucleus (SCN). To investigate this relationship in the rat, we examined the circadian expression of clock genes in the SCN and eye tissue during a 24 h day/night cycle. In the SCN, rPer1 and rPer2 mRNAs were expressed in a clear circadian rhythm like rCry1 and rCry2 mRNAs, whereas the level of BMAL1 and CLOCK mRNAs decreased during the day and increased during the night with a relatively low amplitude. It seems that the clock genes of the SCN may function in response to a master clock oscillation in the rat. In the eye, the rCry1 and rCry2 were expressed in a circadian rhythm with an increase during subjective day and a decrease during subjective night. However, the expression of Opn4 mRNA did not exhibit a clear circadian pattern, although its expression was higher in daytime than at night. This suggests that cryptochromes located in the eye, rather than melanopsin, are the major photoreceptive system for synchronizing the circadian rhythm of the SCN in the rat.

Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2

  • Kim, Mikyung;Pena, June Bryan de la;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • 제26권4호
    • /
    • pp.358-367
    • /
    • 2018
  • Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.

Diversification of the molecular clockwork for tissue-specific function: insight from a novel Drosophila Clock mutant homologous to a mouse Clock allele

  • Cho, Eunjoo;Lee, Euna;Kim, Eun Young
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.587-589
    • /
    • 2016
  • The circadian clock system enables organisms to anticipate the rhythmic environmental changes and to manifest behavior and physiology at advantageous times of the day. Transcriptional/translational feedback loop (TTFL) is the basic feature of the eukaryotic circadian clock and is based on the rhythmic association of circadian transcriptional activator and repressor. In Drosophila, repression of dCLOCK/CYCLE (dCLK/CYC) mediated transcription by PERIOD (PER) is critical for inducing circadian rhythms of gene expression. Pacemaker neurons in the brain control specific circadian behaviors upon environmental timing cues such as light and temperature cycle. We show that amino acids 657-707 of dCLK are important for the transcriptional activation and the association with PER both in vitro and in vivo. Flies expressing dCLK lacking AA657-707 in $Clk^{out}$ genetic background, homologous to the mouse Clock allele where exon 19 region is deleted, display pacemaker-neuron-dependent perturbation of the molecular clockwork. The molecular rhythms in light-cycle-sensitive pacemaker neurons such as ventral lateral neurons ($LN_vs$) were significantly disrupted, but those in temperature-cycle-sensitive pacemaker neurons such as dorsal neurons (DNs) were robust. Our results suggest that the dCLK-controlled TTFL diversify in a pacemaker-neuron-dependent manner which may contribute to specific functions such as different sensitivities to entraining cues.

Pigment-dispersing factor induces phase shifts of circadian locomotor rhythm in the cricket Gryllus bimaculatus

  • Singaravel, Muniyandi;Tomioka, Kenji
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.243-245
    • /
    • 2002
  • Pigment-dispersing factor (PDF) is an octadecapeptide distributed in the optic lobe and the brain in a variety of insect species. There are lines of evidence suggesting possible involvement of PDF in the insect circadian system. However, its physiological roles in the circadian time keeping mechanism have not been clearly defined. In this study, we have examined the phase shifting effects of Gryllus-PDF on the circadian locomotor rhythm in the cricket Gryllus bimaculatus of which circadian clock is located in the optic lobe. Phase shifts in the circadian activity rhythm were measured following microinjection of 22nl of vehicle (Ringer's solution) or O.lmM PDF into the optic lobe through the compound eye at various circadian times. The results showed that PDF induced phase shifts of the circadian clock in a phase-dependent manner, suggesting that it may play a role as an input signal for the circadian clock.

  • PDF