• Title/Summary/Keyword: Circadian activity

Search Result 61, Processing Time 0.025 seconds

Antioxidative and Circadian Rhythm Regulation Effect of Quercus gilva Extract

  • HUH, Jin-Sung;LEE, Sora;KIM, Dong-Soo;CHOI, Myung Suk;CHOI, Hyunmo;LEE, Kyung-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.338-352
    • /
    • 2022
  • Herein, water and ethanol extracts were obtained from the leaves, branches, kernels, and pericarp of Quercus gilva and subsequently analyzed for antioxidant activity and circadian rhythm regulation effects. Candidate components that may affect circadian rhythm and antioxidant activity were investigated to discover potential functional materials. Antioxidant activity was analyzed via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity assays, showing that the hot water extract exhibited higher activity than that of the ethanol extract. In particular, the branch extract showed high antioxidant activity. By measuring total contents of polyphenols, flavonoids, and tannins, the hot water branch extract showed the highest concentrations, highlighting their significant contribution to the antioxidant activity. Examination of the circadian rhythm regulation of each extract showed that the ethanol extract exhibited greater impacts on the circadian rhythm amplitude compared to the water extract. The branch ethanol extract induced circadian rhythm amplitude changes via clock gene Bmal1 expression regulation. Determination of 12 phenolic compound concentrations showed that the branch ethanol extract contained many phenolic compounds, including catechin. This suggests that these com- pounds affected circadian rhythm regulation. In conclusion, the hot water branch extract has potential as an natural antioxidant material, while the corresponding ethanol extract has potential as a functional material for regulating circadian rhythm.

Anatomy and Physiology in Human Circadian Rhythms (인체 일주기리듬의 해부학 및 생리학)

  • Sohn, Chang-Ho
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • Chronobiology is the area of medicine that is, how time-related event shape our daily biologic responses and apply to any aspect of medicine with regard to altering pathophysiology and treatment response. In mammals, there are several evidences that prove suprachiasmatic nuclei(SCN) is the major circadian pacemaker and the circadian rhythm influences so many biological aspects of an living organism such as rest-activity, thermoregulation, reproduction, and endocrine system. In case of human beings, there had been little information of circadian system. That may be due to the experimental, technical difficulties to study but also to the fact that human has the more complex environments that may alter the circadina rhythm like the artificial light, many socio-cultural aspects and so forth. However, several reports of these days indicate human's circadian system is composed of two or more circadian oscillators and SCN is the major circadian oscillator among them like the other mammals. Free-running circadinan period of mankind is about 24 hours rather than about 25 hours, and rest-activity rhythm is polymodal like other species. In addition to that, human may have capcities to change the circadian rhythm as the seasonal changes of daynight schedule. In this article, the author will summarize recent progress of anatomy and physiology of the circadian clock mechanism in humans.

  • PDF

Pigment-dispersing factor induces phase shifts of circadian locomotor rhythm in the cricket Gryllus bimaculatus

  • Singaravel, Muniyandi;Tomioka, Kenji
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.243-245
    • /
    • 2002
  • Pigment-dispersing factor (PDF) is an octadecapeptide distributed in the optic lobe and the brain in a variety of insect species. There are lines of evidence suggesting possible involvement of PDF in the insect circadian system. However, its physiological roles in the circadian time keeping mechanism have not been clearly defined. In this study, we have examined the phase shifting effects of Gryllus-PDF on the circadian locomotor rhythm in the cricket Gryllus bimaculatus of which circadian clock is located in the optic lobe. Phase shifts in the circadian activity rhythm were measured following microinjection of 22nl of vehicle (Ringer's solution) or O.lmM PDF into the optic lobe through the compound eye at various circadian times. The results showed that PDF induced phase shifts of the circadian clock in a phase-dependent manner, suggesting that it may play a role as an input signal for the circadian clock.

  • PDF

Effect of mPER1 on the Expression of HSP105 Gene in the Mouse SCN

  • Kim Han-Gyu;Bae Ki-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.53-56
    • /
    • 2006
  • The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the circadian pacemaker entrained to the 24-hr day by environmental time cues. Major circadian genes such as mPeriod ($mPer1{\sim}3$) and mCryptochrome ($mCry1{\sim}2$) are actively transcribed by the action of CLOCK/BMAL heterodimers, and in turn, these are being suppressed by the mPER/mCRY complex. In the study, the locomotor activity rhythms of mPer1 Knockout (KO) mice are measured, and the expression profiles of Heat Shock Protein 105kDa (HSP 105) genes in the SCN were measured by in situ hybridization. In agreement with previous reports, the locomotor activity rhythm of mPer1 KO mice was much shorter than that of wildtype. In addition, the total bout of activity of mPer1 KO was less in comparison to control mice. The expression of HSP 105 in the SCN of mPer1 KO mice was ranged from CT6 to CT22, with a peak level at CT14, implying that the gene are under the control of circadian clock. However, the expression of HSP 105 in the SCN of wildtype could not be detected in our study. Further analysis will reveal the direct or indirect regulation by mPer1 on the expression in the SCN and the role of the gene in the circadian clock.

  • PDF

Photoperiodic modulation of insect circadian rhythms

  • Tomioka, Kenji;Uwozumi, Kouzo;Koga, Mika
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.9-12
    • /
    • 2002
  • Circadian rhythms can be seen in a variety of physiological functions in insects. Light is a powerful zeitgeber not only synchronizing but also modulating the rhythm to adjust insect's temporal structure to seasonal changes in the environmental cycle. There are two general effects of the length of light phase within 24 hr light cycles on the circadian rhythms, i.e., the modulation of free-running period and the waveform. Since the photoperiodic modulation of the free-running period is induced even in the clock mutant flies, per$\^$s/, the free-running period is not fully determined genetically. In crickets, the ratio of activity (a) and rest phase (p) under the constant darkness (DD) is clearly dependent on the photoperiod under which they have been kept. When experienced the longer photoperiod it becomes smaller. The magnitude of change in a/p-ratio is dependent on the number of cycles they experienced. The neuronal activity of the optic lobe in DD shows the a/p-ratio changing with the preceding photoperiod. These data suggest that a single circadian pacemaker stores and maintains the photoperiodic information and that there is a system that accumulates the effects of single photoperiod to cause greater effects.

  • PDF

Melatonin Secretion Changes Upon Lightning and Feeding on the Bird Delichon urbica (광선 및 먹이유무에 따른 Delichon urbica의 Melatonin 농도 변화)

  • 한상진
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.147-150
    • /
    • 2000
  • Melatonin plasma in Swallows exhibited circadian rhythmical secretions in the LD (Light and dark, 12:12) period with and without feeding. But their average difference between at CT6 (Circadian Time) and CT18 was 3.53 ng/$\textrm{m}{\ell}$ in LD period with feeding. on the other side 1.60 ng/$m\ell$ during without feeding. Melatonin concentration at CT6 without feeding incresed from 0.22 ng/$\textrm{m}{\ell}$ to 0.93 ng/$\textrm{m}{\ell}$. It is demonstrated that decresing melatonin secretion may reduce digestive function in order to ready for the migration. While the birds with feeding exhibited circadian rhythmical activity, their activity without feeding was durable. The concentrations of melatonin plasma by refeeding were 1.53 ng/$\textrm{m}{\ell}$ at CT6 and 6.07 ng/$\textrm{m}{\ell}$ at CT18. Melatonin plasma concentration in the night increased by more than ca. quadruple at day. This results suggest that melatonin regulates metabolism for the return to the normal metabolism condition after migration. After 3 days refeeding melatonin was secreted circadian rhythmically same as the secretions with feeding at beginning.

  • PDF

Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors

  • Ri, Hwajung;Lee, Jongbin;Sonn, Jun Young;Yoo, Eunseok;Lim, Chunghun;Choe, Joonho
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.

Instrumentation and Software for Analysis of Arabidopsis Circadian Leaf Movement

  • Kim, Jeong-Sik;Nam, Hong-Gil
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.5.1-5.4
    • /
    • 2009
  • This article is an addendum to the authors’ previous article (Kim, J. et al. (2008) Plant Cell 20, 307-319). The instrumentation and software described in this article were used to analyze the circadian leaf movement in the previous article. Here, we provide detailed and practical information on the instrumentation and the software. The source code of the LMA program is freely available from the authors. The circadian clock regulates a wide range of cyclic physiological responses with a 24 hour period in most organisms. Rhythmic leaf movement in plants is a typical robust manifestation of rhythms controlled by the circadian clock and has been used to monitor endogenous circadian clock activity. Here, we introduce a relatively easy, inexpensive, and simple approach for measuring leaf movement circadian rhythms using a USB-based web camera, public domain software and a Leaf Movement Assay (LMA) program. The LMA program is a semi-automated tool that enables the user to measure leaf lengths of individual Arabidopsis seedlings from a set of time-series images and generates a wave-form output for leaf rhythm. This is a useful and convenient tool for monitoring the status of a plant's circadian clock without an expensive commercial instrumentation and software.

Relationship between ambulatory blood pressure monitoring and cardiac function (보행 혈압 측정과 심장 기능의 관계)

  • Song, Young-Hwan
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.752-755
    • /
    • 2009
  • It is well known that hemodynamic load is one of the most important determinants of cardiac structure and function. Circadian variations in blood pressure (BP) are usually accompanied by consensual changes in peripheral resistance and/or cardiac output. In recent years, reduction in circadian variations in BP and, in particular, loss of nocturnal decline of BP were observed in hypertensive patients with left ventricular hypertrophy (LVH). The patients with only a slight or no loss of nocturnal decline of BP were considered "non-dippers". Regression of LVH was observed after prolonged antihypertensive therapy. Restoration of the circadian rhythm of BP was also observed. However, the classification of patients into "dippers" and "non-dippers" is arbitrary and poorly standardized and repeatable, and in the recent studies, most hypertensive patients with LVH were "dippers". Therefore, we should be particularly cautious about the conclusions drawn using this index. On the other hand, reduced activity of low-pressure cardiopulmonary baroreceptors and impaired day-to-night modulation of autonomic nervous system activity were observed in patients with only LVH. Therefore, alterations in cardiac structure may impair BP modulation. On the other hand, the reverse can also be trueprimary alterations in BP modulation, through a persistently elevated afterload, can increase cardiac mass. Thus, the interrelationship between cardiac structure and BP modulation is complex. Hence, new and more specific methods of evaluating circadian changes in BP are needed to better clarify the abovementioned reciprocal influences.

Circadian Rhythms Characteristics of Nurses Providing Direct Patient Care: An Observational Study

  • Ilknur Dolu;Serap Acikgoz;Ali Riza Demirbas;Erdem Karabulut
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • Background: In today's modern world, longer working hours, shift work, and working at night have become major causes of the disruption of our natural circadian rhythms. This study aimed to investigate the effects of the type of shift work (rotating vs. fixed day), duty period (on-duty vs. off-duty), and working period within each shift (nighttime vs. daytime) on the circadian rhythm characteristics of nurses who provide direct patient care. Methods: This cross-sectional study used a purposive sampling method. Cosinor analysis was applied to analyze the actigraphy data of nurses providing direct patient care for seven consecutive days. The linear mixed effects model was then used to determine any variances between shift type, duty period, and working period within each shift for the nurses. Results: The mesor value did not differ according to nurses' shift type, duty period, and working period within each shift. The amplitude was statistically higher in on-duty nurses and in daytime working hours. The acrophase was significantly delayed in nighttime working hours. As well as nurses in rotating shift had experience. Conclusion: Our findings revealed that the peak activity of nurses occurs significantly later at night while working and nurses working during nighttime hours may have a weaker or less distinct circadian rhythm. Thus, this study suggests that limits be placed on the number of rotating nighttime shifts for nurses.