• Title/Summary/Keyword: Ciphertext policy attribute-based encryption

Search Result 26, Processing Time 0.019 seconds

Secure Attribute-Based Access Control with a Ciphertext-Policy Attribute-Based Encryption Scheme

  • Sadikin, Rifki;Park, Young Ho;Park, Kil Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • An access control system is needed to ensure only authorized users can access a sensitive resource. We propose a secure access control based on a fully secure and fine grained ciphertext-policy attribute-based encryption scheme. The access control for a sensitive resource is ensured by encrypting it with encryption algorithm from the CP-ABE scheme parameterized by an access control policy. Furthermore, the proposed access control supports non-monotone type access control policy. The ciphertext only can be recovered by users whose attributes satisfy the access control policy. We also implement and measure the performance of our proposed access control. The results of experiments show that our proposed secure access control is feasible.

Verifiable Outsourced Ciphertext-Policy Attribute-Based Encryption for Mobile Cloud Computing

  • Zhao, Zhiyuan;Wang, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3254-3272
    • /
    • 2017
  • With the development of wireless access technologies and the popularity of mobile intelligent terminals, cloud computing is expected to expand to mobile environments. Attribute-based encryption, widely applied in cloud computing, incurs massive computational cost during the encryption and decryption phases. The computational cost grows with the complexity of the access policy. This disadvantage becomes more serious for mobile devices because they have limited resources. To address this problem, we present an efficient verifiable outsourced scheme based on the bilinear group of prime order. The scheme is called the verifiable outsourced computation ciphertext-policy attribute-based encryption scheme (VOC-CP-ABE), and it provides a way to outsource intensive computing tasks during encryption and decryption phases to CSP without revealing the private information and leaves only marginal computation to the user. At the same time, the outsourced computation can be verified by two hash functions. Then, the formal security proofs of its (selective) CPA security and verifiability are provided. Finally, we discuss the performance of the proposed scheme with comparisons to several related works.

Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and Testing

  • Li, Jiguo;Wang, Haiping;Zhang, Yichen;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3339-3352
    • /
    • 2016
  • In ciphertext-policy attribute-based encryption (CP-ABE) scheme, a user's secret key is associated with a set of attributes, and the ciphertext is associated with an access policy. The user can decrypt the ciphertext if and only if the attribute set of his secret key satisfies the access policy specified in the ciphertext. In the present schemes, access policy is sent to the decryptor along with the ciphertext, which means that the privacy of the encryptor is revealed. In order to solve such problem, we propose a CP-ABE scheme with hidden access policy, which is able to preserve the privacy of the encryptor and decryptor. And what's more in the present schemes, the users need to do excessive calculation for decryption to check whether their attributes match the access policy specified in the ciphertext or not, which makes the users do useless computation if the attributes don't match the hidden access policy. In order to solve efficiency issue, our scheme adds a testing phase to avoid the unnecessary operation above before decryption. The computation cost for the testing phase is much less than the decryption computation so that the efficiency in our scheme is improved. Meanwhile, our new scheme is proved to be selectively secure against chosen-plaintext attack under DDH assumption.

Ciphertext Policy-Attribute Based Encryption with Non Monotonic Access Structures (비단조 접근 구조를 갖는 CP-ABE 방식)

  • Sadikin, Rifki;Moon, SangJae;Park, YoungHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.21-31
    • /
    • 2013
  • A ciphertext policy-attribute based encryption(CP-ABE) scheme can be used to realize access control mechanism without a trusted server. We propose an attribute-based access control mechanism by incorporating a CP-ABE scheme to ensure only authorized users can access the sensitive data. The idea of CP-ABE is to include access control policy in the ciphertexts, in which they can only be decrypted if a user possesses attributes that pass through the ciphertext's access structure. In this paper, we prove a secure CP-ABE scheme where the policy can be expressed in non-monotonic access structures. We further compare the performance of our scheme with the existing CP-ABE schemes.

Ciphertext policy attribute-based encryption supporting unbounded attribute space from R-LWE

  • Chen, Zehong;Zhang, Peng;Zhang, Fangguo;Huang, Jiwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2292-2309
    • /
    • 2017
  • Ciphertext policy attribute-based encryption (CP-ABE) is a useful cryptographic technology for guaranteeing data confidentiality but also fine-grained access control. Typically, CP-ABE can be divided into two classes: small universe with polynomial attribute space and large universe with unbounded attribute space. Since the learning with errors over rings (R-LWE) assumption has characteristics of simple algebraic structure and simple calculations, based on R-LWE, we propose a small universe CP-ABE scheme to improve the efficiency of the scheme proposed by Zhang et al. (AsiaCCS 2012). On this basis, to achieve unbounded attribute space and improve the expression of attribute, we propose a large universe CP-ABE scheme with the help of a full-rank differences function. In this scheme, all polynomials in the R-LWE can be used as values of an attribute, and these values do not need to be enumerated at the setup phase. Different trapdoors are used to generate secret keys in the key generation and the security proof. Both proposed schemes are selectively secure in the standard model under R-LWE. Comparison with other schemes demonstrates that our schemes are simpler and more efficient. R-LWE can obtain greater efficiency, and unbounded attribute space means more flexibility, so our research is suitable in practices.

Traceable Ciphertet-Policy Attribute-Based Encryption with Constant Decryption

  • Wang, Guangbo;Li, Feng;Wang, Pengcheng;Hu, Yixiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3401-3420
    • /
    • 2021
  • We provide a traceable ciphertext-policy attribute based encryption (CP-ABE) construction for monotone access structures (MAS) based on composite order bilinear groups, which is secure adaptively under the standard model. We construct this scheme by making use of an "encoding technique" which represents the MAS by their minimal sets to encrypt the messages. To date, for all traceable CP-ABE schemes, their encryption costs grow linearly with the MAS size, the decryption costs grow linearly with the qualified rows in the span programs. However, in our traceable CP-ABE, the ciphertext is linear with the minimal sets, and decryption needs merely three bilinear pairing computations and two exponent computations, which improves the efficiency extremely and has constant decryption. At last, the detailed security and traceability proof is given.

Concealed Policy and Ciphertext Cryptography of Attributes with Keyword Searching for Searching and Filtering Encrypted Cloud Email

  • Alhumaidi, Hind;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.212-222
    • /
    • 2022
  • There has been a rapid increase in the use of cloud email services. As a result, email encryption has become more commonplace as concerns about cloud privacy and security grow. Nevertheless, this increase in usage is creating the challenge of how to effectively be searching and filtering the encrypted emails. They are popular technologies of solving the issue of the encrypted emails searching through searchable public key encryption. However, the problem of encrypted email filtering remains to be solved. As a new approach to finding and filtering encrypted emails in the cloud, we propose a ciphertext-based encrypted policy attribute-based encryption scheme and keyword search procedure based on hidden policy ciphertext. This feature allows the user of searching using some encrypted emails keywords in the cloud as well as allowing the emails filter-based server toward filter the content of the encrypted emails, similar to the traditional email keyword filtering service. By utilizing composite order bilinear groups, a hidden policy system has been successfully demonstrated to be secure by our dual system encryption process. Proposed system can be used with other scenarios such as searching and filtering files as an applicable method.

ON MULTI-AUTHORITY CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION

  • Muller, Sascha;Katzenbeisser, Stefan;Eckert, Claudia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.803-819
    • /
    • 2009
  • In classical encryption schemes, data is encrypted under a single key that is associated with a user or group. In Ciphertext-Policy Attribute-Based Encryption(CP-ABE) keys are associated with attributes of users, given to them by a central trusted authority, and data is encrypted under a logical formula over these attributes. We extend this idea to the case where an arbitrary number of independent parties can be present to maintain attributes and their corresponding secret keys. We present a scheme for multi-authority CP-ABE, propose the first two constructions that fully implement the scheme, and prove their security against chosen plaintext attacks.

Blockchain-based Electronic Medical Record Sharing FrameworkUsing Ciphertext Policy Attribute-Based Cryptography for patient's anonymity (환자의 익명성이 보장되는 암호문 정책 속성중심 암호를 활용한 블록체인 기반 전자의무기록 공유 프레임워크)

  • Baek, Seungsoo
    • Convergence Security Journal
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Medical record is part of the personal information that values the dignity and value of an individual, and can lead to serious social prejudice and disadvantage to an individual when it is breached illegally. In addition, the medical record has been highly threatened because its value is relatively high, and external threats are continuing. In this paper, we propose a medical record sharing framework that guarantees patient's privacy based on blockchain using ciphertext policy-based attribute based proxy re-encryption scheme. The proposed framework first uses the blockchain technology to ensure the integrity and transparency of medical records, and uses the stealth address to build the unlinkability between physician and patient. Besides, the ciphertext policy attribute-based proxy re-encryption scheme is used to enable fine-grained access control, and it is possible to share information in emergency situations without patient's agreement.

Secure and Efficient Conjunctive Keyword Search Scheme without Secure Channel

  • Wang, Jianhua;Zhao, Zhiyuan;Sun, Lei;Zhu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2718-2731
    • /
    • 2019
  • Conjunctive keyword search encryption is an important technique for protecting sensitive data that is outsourced to cloud servers. However, the process of searching outsourced data may facilitate the leakage of sensitive data. Thus, an efficient data search approach with high security is critical. To solve this problem, an efficient conjunctive keyword search scheme based on ciphertext-policy attribute-based encryption is proposed for cloud storage environment. This paper proposes an efficient mechanism for removing the secure channel and resisting off-line keyword-guessing attacks. The storage overhead and the computational complexity are regardless of the number of keywords. This scheme is proved adaptively secure based on the decisional bilinear Diffie-Hellman assumption in the standard model. Finally, the results of theoretical analysis and experimental simulation show that the proposed scheme has advantages in security, storage overhead and efficiency, and it is more suitable for practical applications.