• Title/Summary/Keyword: Cipher block chaining(CBC)

Search Result 15, Processing Time 0.019 seconds

The design of User authentication system by using Public key cryptography system and one time password (공개키 암호화 시스템과 일회성 패스워드를 이용한 사용자 인증 시스템 설계)

  • 이상준;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.498-501
    • /
    • 2002
  • In the process of Log-In to the system, clear User authentication is the beginning of the information protection service. In the open communication system of today, it is true that a password as security instrument and the inner mechanism of the system and cryptography algorithm for the support of this are also poor. For this reason, this dissertation had a final aim to design the user authentication system, which offer the accuracy and safety. It used RSA and CBC mode of DES as cryptography algorithm and used the Challenge-Response scheme at a authentication protocol and designed the User authentication system to which user access using one time password, output of token to guarantee the safety of the authentication protocol. Alto by using the Public key cryptography algorithm, it could embody the more safe User authentication system.

  • PDF

A Spread Random Interleaver based Efficient DES Algorithm for Personal Cloud Computing Environments (개인 클라우드 컴퓨팅 환경을 위한 스프레드 랜덤 인터리버 기반의 효율적인 DES 알고리즘)

  • Chung, Yeon Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • An efficient encryption algorithm based on the Data Encryption Standard (DES) for personal cloud computing environments is presented. The proposed algorithm improves data privacy, security and also encryption speed, compared with the triple DES. The improvement of the proposed algorithm stems from enhanced privacy inherent from the use of spread random interleaver in the place of the known substitution table for initial and final permutations in the DES algorithm. The simulation results demonstrate that the interleaver based DES (I-DES) is found to run faster than the triple DES algorithm and also offer improved security. The proposed algorithm also offers encryption for variable-length data using the Cipher Block Chaining (CBC).

An Efficient Hardware Implementation of AES-based CCM Protocol for IEEE 802.11i Wireless LAN Security (IEEE 802.11i 보안용 AES 기반 CCM 프로토콜의 효율적인 하드웨어로 구현)

  • Hwang, Seok-Ki;Lee, Jin-Woo;Kim, Chay-Hyeun;Song, You-Su;Shin, Kyung-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • This paper describes a design of AES-based CCM Protocol for IEEE 802.11i Wireless LAN Security. The CCMP core is designed with 128-bit data path and iterative structyre which uses 1 clock cycle per round operation. To maximize its performance, two AES cores are used, one is for counter mode for data confidentiality and the other is for CBC(Cipher Block Chaining) mode for authentication and data integrity. The S-box that requires the largest hardware in AES core is implemented using composite field arithmetic, and the gate count is reduced by about 23% compared with conventional LUT-based design. The CCMP core designed in Verilog-HDL has 35,013 gates, and the estimated throughput is about 768Mbps at 66-MHz clock frequency.

  • PDF

A Study on the Security Framework in IoT Services for Unmanned Aerial Vehicle Networks (군집 드론망을 통한 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.897-908
    • /
    • 2018
  • In this paper, we propose a security framework for a cluster drones network using the MAVLink (Micro Air Vehicle Link) application protocol based on FANET (Flying Ad-hoc Network), which is composed of ad-hoc networks with multiple drones for IoT services such as remote sensing or disaster monitoring. Here, the drones belonging to the cluster construct a FANET network acting as WTRP (Wireless Token Ring Protocol) MAC protocol. Under this network environment, we propose an efficient algorithm applying the Lightweight Encryption Algorithm (LEA) to the CTR (Counter) operation mode of WPA2 (WiFi Protected Access 2) to encrypt the transmitted data through the MAVLink application. And we study how to apply LEA based on CBC (Cipher Block Chaining) operation mode used in WPA2 for message security tag generation. In addition, a modified Diffie-Hellman key exchange method is approached to generate a new key used for encryption and security tag generation. The proposed method and similar methods are compared and analyzed in terms of efficiency.

S-FEAR: Secure-Fuzzy Energy Aware Routing Protocol for Wireless Sensor Networks

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1436-1457
    • /
    • 2018
  • Secure routing services in Wireless Sensor Networks (WSNs) are essential, especially in mission critical fields such as the military and in medical applications. Additionally, they play a vital role in the current and future Internet of Things (IoT) services. Lightness and efficiency of a routing protocol are not the only requirements that guarantee success; security assurance also needs to be enforced. This paper proposes a Secure-Fuzzy Energy Aware Routing Protocol (S-FEAR) for WSNs. S-FEAR applies a security model to an existing energy efficient FEAR protocol. As part of this research, the S-FEAR protocol has been analyzed in terms of the communication and processing costs associated with building and applying this model, regardless of the security techniques used. Moreover, the Qualnet network simulator was used to implement both FEAR and S-FEAR after carefully selecting the following security techniques to achieve both authentication and data integrity: the Cipher Block Chaining-Message Authentication Code (CBC-MAC) and the Elliptic Curve Digital Signature Algorithm (ECDSA). The performance of both protocols was assessed in terms of complexity and energy consumption. The results reveal that achieving authentication and data integrity successfully excluded all attackers from the network topology regardless of the percentage of attackers. Consequently, the constructed topology is secure and thus, safe data transmission over the network is ensured. Simulation results show that using CBC-MAC for example, costs 0.00064% of network energy while ECDSA costs about 0.0091%. On the other hand, attacks cost the network about 4.7 times the cost of applying these techniques.