• Title/Summary/Keyword: Chungju Dam

Search Result 166, Processing Time 0.02 seconds

Temperature Variation during Construction in the Concrete Dam Body by Artificial Cooling (강제냉각(强制冷却)에 의한 콘크리트 제체(堤體)의 시공중(施工中) 온도변동(溫度變動))

  • Lee, Bae Ho;Kim, Hong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.39-48
    • /
    • 1989
  • The concrete temperature in mass concrete rises rapidly above the placing temperature owing to the heat given off by the hydrating cement. This temperature rise produces tensile stress and cracks which later become the cause of water leakage in concrete structures. It is essential, therefore, to reduce the interior heat of concrete dam given off by hydrating cement by artificial cooling. The present study aiming to study the temperature variations in mass concrete by pipe cooling, compars the actual measurements of Chungju Dam with the temperature calculated by Finite Difference Method(FDM), and it found that the results closely agree with each other. Based on these results, the analyses are performed simulate the interior temperature history of concerte dam made of type II (moderate heat) portland cement under various coditions.

  • PDF

Parameter Estimation of Tank Model by Data Interval and Rainfall Factors for Dry Season (건기 실측간격, 강우인자에 따른 탱크모형 매개변수 추정)

  • Park, Chae Il;Baek, Chun Woo;Jun, Hwan Don;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.856-864
    • /
    • 2006
  • For estimating the minimum discharge to maintain a river, low flow analysis is required and long term runoff records are needed for the analysis. However, runoff data should be estimated to run a hydrologic model for ungaged river basin. For the reason, parameter estimation is crucial to simulate rainfall-runoff events for those basins using Tank model. In this study, only runoff data recorded for dry season are used for parameter estimation, which is different to other methods based on runoff data recorded for wet and dry seasons. The Harmony Search algorithm is used to determine the optimum parameters for Tank model. The coefficient of determination ($R^2$) is served as the objective function in the Harmony Search. In cases that recorded data are insufficient, the recording interval is changed and Empirical CDF is adopted to analyze the estimated parameters. The suggested method is applied to Yongdam dam, Soyanggang dam, Chungju dam and Seomjingang dam basins. As results, the higher $R^2s$ are obtained when the shorter recording interval, the better recorded data quality, and the more rainfall events recorded along with certain rainfall amount is. Moreover, when the total rainfall is higher than the certain amount, $R^2$ is high. Considering the facts found from this study for the low flow analysis, it is possible to estimate the parameters for Tank model properly with the desired confidence level.

Evaluation of Reservoir Storage Effect Using Non-linear Reservoir Model (비선형 저수지 모형을 이용한 저수지의 저류효과 평가)

  • Yoo, Chul-Sang;Jun, Chang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.407-416
    • /
    • 2011
  • This study expressed the reservoir's storage-discharge relation as a non-linear reservoir model and theoretically quantified the reservoir storage effect. Among those non-linear functions like exponential function, logarithmic function and power function considered, the exponential function of the storage-discharge relation was found to be the most valid. The non-linear reservoir model proposed was applied to the Chungju Dam and the Soyang River Dam, whose storage effects during flood were estimated to be about 23 hours and 43 hours, respectively. This result indicates that the Choongju Dam, even though its size and total storage volume are similar to those of the Soyang River Dam, does not achieve enough storage effect as its basin size and the inflow amount are much larger.

Reservoir Management in Flood Period with Chance Constrained LP (위험도제약(危險度制約) 선형계획법(線形計劃法)에 위한 홍수기(洪水期) 저수지운영(貯水池運營))

  • Lee, Kil Seong;Kang, Bu Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.139-151
    • /
    • 1992
  • A reservoir operation model was established under the varying restricted water level(r.w.l.) subject to the inflow distributions in flood period. The optimization model consists of 2 sub-models. One model minimizes deviations of releases from the expected release and the other minimizes capacity requirement for flood control. In order to make deterministic equivalents, the inflow distribution of reservoir is assumed to be 2-parameter Lognormal, and its parameters are estimated by the maximum likelihood method. The model is applied to joint operation of Soyang and Chungju dam. The results show that Soyang was designed for larger flood event than that for Chungju. The operation under the varying r.w.l. turns out to be more effective than one under the uniform r.w.l. Such effect is more obvious at Chungju compared with Soyang. Release pattern shows diminishing and delaying effect in a period of high inflows and larger discharges than actual in a period of low inflows.

  • PDF

A Experimental Study on the 3-D Image Restoration Technique of Submerged Area by Chung-ju Dam (충주댐 수몰지구의 3차원 영상복원 기법에 관한 실험적 연구)

  • 연상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • It will be a real good news fer the people who were lost their hometown by the construction of a large dam to be restored to the farmer state. Focused on Cheung-pyung around where most part were submerged by the Chungju large Dam founded in eurly 1980s, It used remote sensing image restoration Technique in this study in order to restore topographical features before the flood with stereo effects. We gathered comparatively good satellite photos and remotely sensed digital images, then its made a new fusion image from these various satellite images and the topographical map which had been made before the water filled by the DAM. This task was putting together two kinds of different timed images. And then, we generated DEM including the outskirts of that area as matching current contour lines with the map. That could be a perfect 3D image of test areas around before when it had been water filled by making perspective images from all directions included north, south, east and west, fer showing there in 3 dimensions. Also, for close range visiting made of flying simulation can bring to experience their real space at that time. As a result of this experimental task, it made of new fusion images and 3-D perspective images and simulation live images by remotely sensed photos and images, old paper maps about vanished submerged Dam areas and gained of possibility 3-D terrain image restoration about submerged area by large Dam construction.

Development and application of integrated indicators for assessing the water resources performance of multi-purpose and water supply dams (댐 용수공급능력 안정성 평가를 위한 통합지표 개발 및 적용)

  • Sung, Jiyoung;Kang, Boosik;Kim, Bomi;Noh, Seongjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.687-700
    • /
    • 2022
  • For comprehensively assessment the water resources performance of multi-purpose dams and water supply dams in South Korea, a methodology was proposed to utilize the durational reliability along with the integrated auxiliary indicators including resiliency, dimensionless vulnerability, water resource efficiency, specific inflow, and specific water supply. In addition, for the purpose of sustainable dam operation in the future, a plan to grade the water resources performance was presented to periodically evaluate the performance and determine the priority of each dam's structural or non-structural planning according to the evaluation results. As major results, in the case of Sumjingang Dam, the durational reliability was 99.0%, but the integrated auxiliary index was the lowest of 44 points, which was 5th grade. This means that despite the current high reliability, hydrological changes due to future climate change or regional change of water demand-supply balance can have significant impacts on the water resources performances. In contrast, the Chungju Dam with a durational reliability of 93.0%, which is below the average among all multi-purpose dams, shows the 76 points of the integrated auxiliary index, which is 3rd highest following the Soyanggang Dam and the Namgang Dam. Nevertheless, due to the size of the basin, the specific inflow is sufficiently high as 185%, so the actual performance could be evaluated relatively high. The water supply dams designed for a single purpose tend to be evaluated relatively high because they have a high proportion of industrial and municipal water supply and have enough room for the supply capacity.

Analysis on the Correlation between Hydrological Data and Raw Water Turbidity of Han River Basin (한강수계의 수문자료와 원수탁도의 상관관계 분석)

  • Jeong, Anchul;Kang, Taeun;Kim, Seongwon;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • A correlation analysis between raw water turbidity at two wide-area water treatment plants and hydrological data was conducted for efficient water supply, design and management of water treatment plant. Both correlation analysis and principal component analysis were conducted using hydrological time series data such as inflow discharge, outflow discharge, and rainfall at dam basin of intake station of wide-area water treatment plants. And, forecasting of change in turbidity was conducted using regression equation for turbidity prediction. The raw water turbidity of two water treatment plants was strongly related to time series of discharge. The raw water turbidity of Chungju water treatment plant is strongly related to outflow discharge at Chungju dam (0.708). Whereas, the raw water turbidity of Wabu water treatment plant is strongly related to inflow discharge at Paldang dam (0.805). Similar trends between turbidity forecasting result using regression equation and calculation result using estimation equation on Korea water supply facilities standard were obtained. The result of this study can provide basic data for construction and management of water treatment plant.

Unsteady Flow Model with Variable Roughness Coefficient (가변 조도계수 부정류 계산모형)

  • Kim, Han- Joon;Jun, Kyung- Soo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1055-1063
    • /
    • 2004
  • An unsteady flow model is developed that allows variable roughness coefficient for each computational point according to its spatial position and the discharge. A step function or a power function can be used for functional relation between the discharge and the Manning's roughness coefficient. The model is applied to the reach of the South Han River between the Chungju Dam and Paldang Dam, and model parameters are estimated by optimization. Estimated parameters of both the step function model and the Power function model show that Manning's roughness coefficient decreases as the discharge increases. This tendency is more noticeable for the upstream reach of Yeoju compared to the downstream reach. It turns out that the stages calculated by the variable roughness coefficient model agree better with the observed ones than those by the conventional fixed parameter model.

Study of Snow Depletion Characteristics at Two Mountainous Watersheds Using NOAA AVHRR Time Series Data

  • Shin, Hyungjin;Park, Minji;Chae, Hyosok;Kim, Saetbyul;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.315-324
    • /
    • 2013
  • Spatial information of snow cover and depth distribution is a key component for snowmelt runoff modeling. Wide snow cover areas can be extracted from NOAA AVHRR or Terra MODIS satellite images. In this study eight sets of annual snow cover data (1997-2006) in two mountainous watersheds (A: Chungju-Dam and B: Soyanggang-Dam) were extracted using NOAA AVHRR images. The distribution of snow depth within the Snow Cover Area (SCA) was generated using snowfall data from ground meteorological observation stations. Snow depletion characteristics for the two watersheds were analyzed snow distribution time series data. The decreased pattern of SCA can be expressed as a logarithmic function; the determination coefficients were 0.62 and 0.68 for the A and B watersheds, respectively. The SCA decreased over 70% within 10 days from the time of maximum SCA.

Reservoir Operation by Variable Restricted Water Level during Flood Period (홍수기중 가변제한수위에 의한 저수지 운영)

  • Sim, Myeong-Pil;Gwon, O-Ik;Lee, Hwan-Gi
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.217-228
    • /
    • 1995
  • For optimal reservoir operation during flood period, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. The purpose of this study is to decide the restricted water level of the reservoir during flood period specially to meet water demand in non-flood period. The optimal policy is derived by reallocation of storage capacity through the application of variable restricted water level(VRWL) and minimum required water level(MRWL) for shorter intervals. This study also suggests water level dconditions to secure conservation storage capacity at the end of the flood period estimated by reservoir operation study. This paper illustrates an application of the Daecheong Dam and Chungju Dam respectively during flood and the results are reviewed.

  • PDF