• 제목/요약/키워드: Chromosomal microarray

검색결과 40건 처리시간 0.023초

염색체 Microarray 검사의 임상적 적용 (Clinical Applications of Chromosomal Microarray Analysis)

  • 서을주
    • Journal of Genetic Medicine
    • /
    • 제7권2호
    • /
    • pp.111-118
    • /
    • 2010
  • 염색체 microarray 검사는 유전체 전체를 한번에 검색하여 초현미경적인 염색체 이상을 매우 정밀하고 정확하게 검출할 수 있다. 외국에서는 현재 자주 활용되는 임상 진단 검사로 자리잡았고, 염색체 검사 또는 표적 부위를 검출하는 FISH 검사나 PCR 기반의 분자유전학적 방법을 대체하고 있다. 최근 발표된 consensus 들은 염색체 microarray 검사를 비특이적인 다발성 기형, 발달지연 또는 정신지체, 자폐증상질환의 환자에서는 염색체 검사보다 먼저 시행할 수 있는 검사로 제안하였다. 염색체 microarray 검사는 핵형 분석에서 검출된 염색체 불균형을 검증하기 위해 염색체 검사에 보조적으로 활용할 수 있고, 염색체 이상에 대한 보다 정확하고 종합적인 분석이 가능하다. 그러나 염색체 microarray 검사는 균형재배열의 염색체 이상과 low-level 모자이시즘을 검출하기 어렵고, 임상적 중요성이 불명확한 CNV에 대한 해석과 검사비용이 고가라는 한계점이 있다. 이러한 이유로 인해 현재로서는 염색체 microarray 검사가 산전 진단 목적으로는 고식적인 염색체 검사를 대신할 수는 없다는 의견이다. 임상검사실에서 염색체 microarray 검사 시행 시, 유전학적 및 세포유전학적 지식과 경험이 결과 분석과 해석 과정에서 요구되며, 적절한 검증 과정 단계와 유전상담이 동반되어야 한다.

Prenatal chromosomal microarray analysis of fetus with increased nuchal translucency

  • Shim, So Hyun;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.49-54
    • /
    • 2018
  • Nuchal translucency is an important indicator of an aneuploid fetus in prenatal diagnostics. Previously, only the presence of aneuploid could be confirmed by conventional karyotyping of fetuses with thick nuchal translucency. With the development of genetic diagnostic techniques, however, it has been reported that subtle variations not detectable by conventional karyo-typing might occur in cases of pathologic clinical syndrome in euploid fetuses. One of the newer, high-resolution genetic methods in the prenatal setting is chromosomal microarray. The possible association between nuchal translucency thickness with normal karyotype and submicroscopic chromosomal abnormalities detectable by microarray has been studied. How and when to apply microarray in clinical practice, however, is still debated. This article reviews the current studies on the clinical application of microarray in cases of increased nuchal translucency with normal karyotype for prenatal diagnosis.

Triploidy that escaped diagnosis using chromosomal microarray testing in early pregnancy loss: Two cases and a literature review

  • Park, Ji Eun;Park, Ji Kwon;Kang, Min Young;Jo, Hyen Chul;Cho, In Ae;Baek, Jong Chul
    • Journal of Genetic Medicine
    • /
    • 제16권2호
    • /
    • pp.76-80
    • /
    • 2019
  • About 15% to 20% of all clinically recognized pregnancies result in spontaneous abortion or miscarriage, and chromosomal anomalies can be identified in up to 50% of first trimester miscarriages. Chromosomal microarray analysis (CMA) is currently considered first-tier testing for detecting fetal chromosomal abnormalities and is supported by the absence of cell culture failure or erroneous results due to cell contamination in pregnancy loss. Triploidy is a lethal chromosome number abnormality characterized by an extra haploid set of chromosomes. Triploidy is one of the most common chromosomal aberrations in first trimester spontaneous abortions. Here, we report two cases of triploidy abortion that were not detected using array comparative genomic hybridization-based CMA. The aim of this report was to remind clinicians of the limitations of chromosomal testing and the misdiagnosis that can result from biased test selection.

Clinical application of prenatal chromosomal microarray

  • Chang Ahn Seol
    • Journal of Genetic Medicine
    • /
    • 제19권2호
    • /
    • pp.43-48
    • /
    • 2022
  • A prenatal chromosomal microarray (CMA) is generally recommended when a major anomaly is suspected on prenatal ultrasonography. As it can overcome the limitations of conventional karyotyping, it is expected that the number of prenatal CMA test requests will gradually increase. However, given the specificity of prenatal diagnosis, there are practical considerations compared to postnatal testing, such as the validation of prenatal specimens, maternal cell contamination, precautions when reporting variants of uncertain significance, and the need for comprehensive genetic counseling considering secondary findings. The purpose of this article is to provide necessary information to health care providers in consideration of these issues and to provide appropriate genetic counseling to patients.

Clinical Application of Chromosomal Microarray for Germline Disorders

  • Chang Ahn Seol
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.24-28
    • /
    • 2023
  • Chromosomal microarray (CMA) is primarily recommended for detecting clinically significant copy number variants (CNVs) in the genetic diagnosis of developmental delay, intellectual disability, autism, and congenital malformations. Prenatal CMA is recommended when a fetus has major congenital malformations. The main principles of CMA can be divided into array comparative genomic hybridization and single-nucleotide polymorphism arrays. In the current CMA platforms, these two principles are combined, and detection of genetic abnormalities including CNVs and absence of heterozygosity is facilitated. In this review, I described practical assessment of CMA testing regarding to laboratory management of CMA, interpretation of CNVs, and special considerations for comprehensive genetic counseling.

Chromosomal Microarray Testing in 42 Korean Patients with Unexplained Developmental Delay, Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies

  • Lee, Sun Ho;Song, Wung Joo
    • Genomics & Informatics
    • /
    • 제15권3호
    • /
    • pp.82-86
    • /
    • 2017
  • Chromosomal microarray (CMA) is a high-resolution, high-throughput method of identifying submicroscopic genomic copy number variations (CNVs). CMA has been established as the first-line diagnostic test for individuals with developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), and multiple congenital anomalies (MCAs). CMA analysis was performed in 42 Korean patients who had been diagnosed with unexplained DD, ID, ASDs, and MCAs. Clinically relevant CNVs were discovered in 28 patients. Variants of unknown significance were detected in 13 patients. The diagnostic yield was high (66.7%). CMA is a superior diagnostic tool compared with conventional karyotyping and fluorescent in situ hybridization.

Genome-wide Examination of Chromosomal Aberrations in Neuroblastoma SH-SY5Y Cells by Array-based Comparative Genomic Hybridization

  • Do, Jin Hwan;Kim, In Su;Park, Tae-Kyu;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.105-112
    • /
    • 2007
  • Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12~ q44 (Chr1:142188905-246084832), 7 (over the whole chro-mosome), 2p25.3~p16.3 (Chr2:18179-47899074), and 17q 21.32~q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1~q21.3 (Chr14:37666271-47282550), and 22q13.1~q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.

Clinical application of chromosomal microarray for pathogenic genomic imbalance in fetuses with increased nuchal translucency but normal karyotype

  • Lee, Dongsook;Go, Sanghee;Na, Sohyun;Park, Surim;Ma, Jinyoung;Hwang, Doyeong
    • Journal of Genetic Medicine
    • /
    • 제17권1호
    • /
    • pp.21-26
    • /
    • 2020
  • Purpose: To evaluate the additive value of prenatal chromosomal microarray analysis (CMA) in assessing increased nuchal translucency (NT) (≥3.5 mm) with normal karyotype and the possibility of detecting clinically significant genomic imbalance, based on specific indications. Materials and Methods: Invasive samples from 494 pregnancies with NT ≥3.5 mm, obtained from the Research Center of Fertility & Genetics of Hamchoon Women's Clinic between January 2019 and February 2020, were included in this study and CMA was performed in addition to a standard karyotype. Results: In total, 494 cases were subjected to both karyotype and CMA analyses. Among these, 199 cases of aneuploidy were excluded. CMA was performed on the remaining 295 cases (59.7%), which showed normal (231/295, 78.3%) or non-significant copy number variation (CNV), such as benign CNV or variants of uncertain clinical significance likely benign (53/295, 18.0%). Clinically significant CNVs were detected in 11 cases (11/295, 3.7%). Conclusion: Prenatal CMA resulted in a 3% to 4% higher CNV diagnosis rate in fetuses exhibiting increased NT (≥3.5 mm) without other ultrasound detected anomalies and normal karyotype. Therefore, we suggest using high resolution, non- targeting CMA to provide valuable additional information for prenatal diagnosis. Further, we recommend that a genetics specialist should be consulted to interpret the information appropriately and provide counseling and follow-up services after prenatal CMA.

Quantitative analysis using decreasing amounts of genomic DNA to assess the performance of the oligo CGH microarray

  • Song Sunny;Lazar Vladimir;Witte Anniek De;Ilsley Diane
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2006년도 Principles and Practice of Microarray for Biomedical Researchers
    • /
    • pp.71-76
    • /
    • 2006
  • Comparative genomic hybridization (CGH) is a technique for studying chromosomal changes in cancer. As cancerous cells multiply, they can undergo dramatic chromosomal changes, including chromosome loss, duplication, and the translocation of DNA from one chromosome to another. Chromosome aberrations have previously been detected using optical imaging of whole chromosomes, a technique with limited sensitivity, resolution, quantification, and throughput. Efforts in recent years to use microarrays to overcome these limitations have been hampered by inadequate sensitivity, specificity and flexibility of the microarray systems. The oligonucleotide CGH microarray system overcomes several scientific hurdles that have impeded comparative genomic studies of cancer. This new system can reliably detect single copy deletions in chromosomes. The system includes a whole human genome microarray, reagents for sample preparation, an optimized microarray processing protocol, and software for data analysis and visualization. In this study, we determined the sensitivity, accuracy and reproducibility of the new system. Using this assay, we find that the performance of the complete system was maintained over a range of input genomic DNA from 5 ug down to 0.15 ug.

  • PDF

Gene Expression study of human chromosomal aneuploid

  • 이수만
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2006년도 Principles and Practice of Microarray for Biomedical Researchers
    • /
    • pp.98-107
    • /
    • 2006
  • Chromosomal copy number changes (aneuploidies) are common in human populations. The extra chromosome can affect gene expression by whole-genome level. By gene expression microarray analysis, we want to find aberrant gene expression due to aneuploidies in Klinefelter (+X) and Down syndrome (+21). We have analyzed the inactivation status of X-linked genes in Klinefelter Syndrome (KS) by using X-linked cDNA microarray and cSNP analysis. We analyzed the expression of 190 X-linked genes by cDNA microarray from the lymphocytes of five KS patients and five females (XX) with normal males (XY) controls. cDNA microarray experiments and cSNP analysis showed the differentially expressed genes were similar between KS and XX cases. To analyze the differential gene expressions in Down Syndrome (DS), Amniotic Fluid (AF)cells were collected from 12 pregnancies at $16{\sim}18$ weeks of gestation in DS (n=6) and normal (n=6) subjects. We also analysis AF cells for a DNA microarray system and compared the chip data with two dimensional protein gel analysis of amniotic fluid. Our data may provide the basis for a more systematic identification of biological markers of fetal DS, thus leading to an improved understanding of pathogenesis for fetal DS.

  • PDF