• 제목/요약/키워드: Chromosomal ends

검색결과 15건 처리시간 0.025초

염색체 말단부위 (Back to the Ends: Chromosomal DNA)

  • 이미형;서동철
    • Childhood Kidney Diseases
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2008
  • Nucleic scids transfer the genetic information for serving a central biological purpose. The nucleic acids are polymers of nucleotides and they are mainly ribonucleic acid(RNA) and deoxyribonucleic acid(DNA). The nucleotides are stoichiometrically composed of five-carbon sugars, nitrogeneous bases, and phosphoric acids. The chemistry of nucleic acids and characteristics of different genomes are decribed for further study. Most of DNA genomes tend to be circular including bacterial genomes and eukaryotic mitochondrial DNA. Eukaryotic chromosomes in cells, in contrast, are generally linear. The ends of linear chromosomes are called telomeres. The genomes of different species, such as mammals, plants, invertebrates can be compared with the chromosome ends. The telomeric complex allows cells to distinguish the random DNA breaks and natural chromosomal ends. The very ends of chromosomes cannot be replicated by any ordinary mechanisms. The shortening of telomeric DNA templates in semiconservative replication is occurred with each cell division. The short telomere length is critically related to aging, tumors and dieases.

  • PDF

Epigenetic aspects of telomeric chromatin in Arabidopsis thaliana

  • Lee, Won Kyung;Cho, Myeon Haeng
    • BMB Reports
    • /
    • 제52권3호
    • /
    • pp.175-180
    • /
    • 2019
  • Telomeres are nucleoprotein complexes at the physical ends of linear eukaryotic chromosomes. They protect the chromosome ends from various external attacks to avoid the loss of genetic information. Telomeres are maintained by cellular activities associated with telomerase and telomere-binding proteins. In addition, epigenetic regulators have pivotal roles in controlling the chromatin state at telomeres and subtelomeric regions, contributing to the maintenance of chromosomal homeostasis in yeast, animals, and plants. Here, we review the recent findings on chromatin modifications possibly associated with the dynamic states of telomeres in Arabidopsis thaliana.

Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis

  • Yun, Hyeseon;Kim, Keunpil
    • BMB Reports
    • /
    • 제52권10호
    • /
    • pp.607-612
    • /
    • 2019
  • During meiosis, programmed double-strand breaks (DSBs) are repaired via recombination pathways that are required for faithful chromosomal segregation and genetic diversity. In meiotic progression, the non-homologous end joining (NHEJ) pathway is suppressed and instead meiotic recombination initiated by nucleolytic resection of DSB ends is the major pathway employed. This requires diverse recombinase proteins and regulatory factors involved in the formation of crossovers (COs) and non-crossovers (NCOs). In mitosis, spontaneous DSBs occurring at the G1 phase are predominantly repaired via NHEJ, mediating the joining of DNA ends. The Ku complex binds to these DSB ends, inhibiting additional DSB resection and mediating end joining with Dnl4, Lif1, and Nej1, which join the Ku complex and DSB ends. Here, we report the role of the Ku complex in DSB repair using a physical analysis of recombination in Saccharomyces cerevisiae during meiosis. We found that the Ku complex is not essential for meiotic progression, DSB formation, joint molecule formation, or CO/NCO formation during normal meiosis. Surprisingly, in the absence of the Ku complex and functional Mre11-Rad50-Xrs2 (MRX) complex, a large portion of meiotic DSBs was repaired via the recombination pathway to form COs and NCOs. Our data suggested that Ku complex prevents meiotic recombination in the elimination of MRX activity.

Genomic DNA Chip: Genome-wide profiling in Cancer

  • 이종호
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2001년도 제2회 생물정보 워크샵 (DNA Chip Bioinformatics)
    • /
    • pp.61-86
    • /
    • 2001
  • All cancers are caused by abnormalities in DNA sequence. Throughout life, the DNA in human cells is exposed to mutagens and suffers mistakes in replication, resulting in progressive, subtle changes in the DNA sequence in each cell. Since the development of conventional and molecular cytogenetic methods to the analysis of chromosomal aberrations in cancers, more than 1,800 recurring chromosomal breakpoints have been identified. These breakpoints and regions of nonrandom copy number changes typically point to the location of genes involved in cancer initiation and progression. With the introduction of molecular cytogenetic methodologies based on fluorescence in situ hybridization (FISH), namely, comparative genomic hybridization (CGH) and multicolor FISH (m-FISH) in carcinomas become susceptible to analysis. Conventional CGH has been widely applied for the detection of genomic imbalances in tumor cells, and used normal metaphase chromosomes as targets for the mapping of copy number changes. However, this limits the mapping of such imbalances to the resolution limit of metaphase chromosomes (usually 10 to 20 Mb). Efforts to increase this resolution have led to the "new"concept of genomic DNA chip (1 to 2 Mb), whereby the chromosomal target is replaced with cloned DNA immobilized on such as glass slides. The resulting resolution then depends on the size of the immobilized DNA fragments. We have completed the first draft of its Korean Genome Project. The project proceeded by end sequencing inserts from a library of 96,768 bacterial artificial chromosomes (BACs) containing genomic DNA fragments from Korean ethnicity. The sequenced BAC ends were then compared to the Human Genome Project′s publicly available sequence database and aligned according to known cancer gene sequences. These BAC clones were biotinylated by nick translation, hybridized to cytogenetic preparations of metaphase cells, and detected with fluorescein-conjugated avidin. Only locations of unique or low-copy Portions of the clone are identified, because high-copy interspersed repetitive sequences in the probe were suppressed by the addition of unlabelled Cotl DNA. Banding patterns were produced using DAPI. By this means, every BAC fragment has been matched to its appropriate chromosomal location. We have placed 86 (156 BAC clones) cytogenetically defined landmarks to help with the characterization of known cancer genes. Microarray techniques would be applied in CGH by replacement of metaphase chromosome to arrayed BAC confirming in oncogene and tumor suppressor gene: and an array BAC clones from the collection is used to perform a genome-wide scan for segmental aneuploidy by array-CGH. Therefore, the genomic DNA chip (arrayed BAC) will be undoubtedly provide accurate diagnosis of deletions, duplication, insertions and rearrangements of genomic material related to various human phenotypes, including neoplasias. And our tumor markers based on genetic abnormalities of cancer would be identified and contribute to the screening of the stage of cancers and/or hereditary diseases

  • PDF

암의 중심체 증폭 이해를 통한 표적 항암제 개발 (Understanding centrosome amplification in cancer: A pathway toward precision-targeted cancer drug development)

  • 김태경
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.950-955
    • /
    • 2023
  • 세포 분열은 생명체의 생존과 발달에 필수적인 과정이며, 이 과정에서 복제된 염색체가 오류 없이 정확하게 두 개로 분리되는 것이 중요하다. 중심체(centrosome)는 미세소관 형성 센터(microtubule-organizing center, MTOC)를 구성하는 핵심 기관이며, MTOC는 세포 분열과정에서 방추체를 구성하는 미세소관을 형성한다. 또한 중심체는 세포에서의 신호 경로와 운동성에 관여한다. 정상적인 세포에서 중심체는 한개씩 존재하지만, S 기에서 2개로 복제되어 세포의 양쪽 끝으로 이동하며, MTOC로부터 생성된 방추사는 복제된 염색체와 결합하여 염색체를 양쪽 끝으로 이동시킨다. 이후 세포는 두 개로 나눠져 세포 분열을 종결한다. 하지만 중심체가 정상적인 숫자보다 많은 중심체 증폭(centrosome amplification) 현상은 암세포에서 흔하게 발생하며, 이것은 염색체 불안정성(chromosomal instability, CIN)을 일으키는 원인이 될 수 있다. 본 논문에서는 중심체 복제 과정에 대해 알아보고, 이 과정에서 PLK4의 역할에 대해 알아본다. 또한 중심체 증폭이 일으킬 수 있는 결과에 대해 알아보고, 중심체 증폭의 핵심 인산화효소인 PLK4를 저해하는 약물이 어떻게 특정 종류의 암세포를 치료하는 데 있어 기여할 수 있는지 고찰해 보고자 한다.

One Step Cloning of Defined DNA Fragments from Large Genomic Clones

  • Scholz, Christian;Doderlein, Gabriele;Simon, Horst H.
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.464-467
    • /
    • 2006
  • Recently, the nucleotide sequences of entire genomes became available. This information combined with older sequencing data discloses the exact chromosomal location of millions of nucleotide markers stored in the databases at NCBI, EMBO or DDBJ. Despite having resolved the intron/exon structures of all described genes within these genomes with a stroke of a pen, the sequencing data opens up other interesting possibilities. For example, the genomic mapping of the end sequences of the human, murine and rat BAC libraries generated at The Institute for Genomic Research (TIGR), reveals now the entire encompassed sequence of the inserts for more than a million of these clones. Since these clones are individually stored, they are now an invaluable source for experiments which depend on genomic DNA. Isolation of smaller fragments from such clones with standard methods is a time consuming process. We describe here a reliable one-step cloning technique to obtain a DNA fragment with a defined size and sequence from larger genomic clones in less than 48 hours using a standard vector with a multiple cloning site, and common restriction enzymes and equipment. The only prerequisites are the sequences of ends of the insert and of the underlying genome.

Application of Adenovirus-Mediated Human Telomerase Catalytic Subunit(hTERT) Gene Promoter in Ovarian Cancer Gene Therapy

  • Song, Joon-Seok;Yoon, Won-Suck;Lee, Kyu-Wan;Kim, Mee-Hye;Kim, Kyung-Tai;Kim, Hy-Sook;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.517-521
    • /
    • 2003
  • Telomerase is a ribonucleoprotein complex whose function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, telomerase RNA template (hTR) and catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. In this report, the possibility of utilization of the hTERT promoter in targeted cancer gene therapy was tested. The hTERT promoter was cloned in the replacement of the CMV promoter, and the HSV-TK gene was subcloned to be controlled by the hTERT gene promoter in the adenovirus shuttle plasmid. Then, the recombinant adenovirus Ad-hT-TK was constructed and was infected into normal and human gynecological cancer cell lines. The selective tumor specific cell death by Ad-hT-TK was identified through these experiments, showing that Ad-hT-TK could be used for targeted cancer gene therapy.

Adenovirus-Mediated Antisense Expression of Telomerase Template RNA Induces Apoptosis in Lung Cancer Cells

  • Song, Joon-Seok;Kim, Sang-Bae;Lee, Young-Ho;Lee, Kyu-Wan;Jung, Hak-Huyn;Kim, Mee-Hye;Kim, Kyung-Tai;Brown, Robert;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.89-95
    • /
    • 2002
  • Telomerase is a ribonucleoprotein complex, whose function is to add telomeric repeats $(TTAGGG)_n$ to chromosomal ends and is also known to play an important role in cellular immortalization. Telomerase is highly active in most tumor cells, yet not in normal cells. Therefore, it may have possible applications in cancer gene therapy. Telomerase consists of two essential components; a telomerase RNA template (hTR) and a catalytic subunit (hTERT). The current study attempted to inhibit the "open" part of the human telomerase RNA (hTR) with an antisense sequence-expressing adenovirus. It was found that the antisense telomerase adenovirus suppressed the telomerase activity, tumor cell growth, and survival in vitro. Furthermore, FACS analysis and TUNEL assay suggested that the reduce viability was mediated through the induction of apoptosis, indicating that this approach might be a useful method for suppressing cancer growth in targeted cancer gene therapy.

Transcriptional Features of the Chromosomal Region Located between the sigH and rplA Genes of Bacillus subtilis

  • Jeong, Sang-Min
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.168-172
    • /
    • 2006
  • In this study. the transcriptional features of a 2.8 kb region spanning the sigH and rplA genes of Bacillus subtilis were clarified using synthetic oligonucleotides complementary to the transcripts of the rpmG, secE, nusG, and rplK genes. The 5' ends of three transcripts corresponding to this region were located and mapped on the chromosome via primer extension analysis. Three regions, designated Prg, Pn, and Prk, which partially share the consensus sequence recognized by ${\sigma}^A$ RNA polymerase, were theorized to function as promoter elements. The rpmG and secE genes of B. subtilis were cotranscribed from the designated prg promoter, whereas the nusG and rplK genes were transcribed separately from the Pn and Prk promoters, respectively. Accordingly, the transcriptional features, as well as the gene organization, of the region encompassing the sigH and rplA genes of B. subtilis, including the rpmG-secE-nusG-rplK genes, were determined to be distinct from those of Escherichia coli. Divergences in terms of gene organization and transcriptional features within the relevant region would serve as excellent criteria for the delineation of phylogenetic relationships among bacteria.

소, 돼지 염색체의 telomeric DNA 분포 양상 (Chromosomal Localization and Distribution of the Telomeric DNA in Cattle and Pigs)

  • 손시환;;;조은정;하해봉
    • Journal of Animal Science and Technology
    • /
    • 제46권4호
    • /
    • pp.547-554
    • /
    • 2004
  • 텔로미어란 진핵세포에 존재하는 DNA-protein 복합체로서 염색체의 말단부에 tandem repeated DNA 서열(TTAGGG)n과 특정 단백질로 구성되어 있으며 세포 분열이 진행함에 따라 이의 길이가 짧아지게 되고 일정 길이 이하가 되면 세포의 사망이 유기된다. 텔로미어의 역할은 게놈의 보호자로서 염색체의 안정성에 본질적으로 작용할고 감수분열시 상동염색체간의 접합에 주된 작용을 하는 것으로 알려져 있다. 본 연구는 소와 돼지의 성축에 대한 텔로미디어의 핵형과 각 염색체상 텔로미어의 양적 분포 양상을 제시하고자 Holstein과 Landrace를 공시하고 이들로부터 섬유아세포 배양으로 중기상을 획득한 다음 human telomeric DNA probe를 이용하여 형광접합보인법(FISH)으로 분석하였다. 실험 결과 소와 돼지의 모든 염색체의 양 말단부에 뚜렷한 텔로미어 프로브의 접합 양상을 발견할 수 있었다. 소의 경우 염색체들 간 텔로미디어의 양적 변이가 나타났으며 돼지의 경우는 모든 분석된 세포에서 특이적으로 6q1의 위치에 interstitial telomere가 존재하였다. 양적형광접합보인법(Q-FISH) 분석 결과 일부 염색체에서 한쪽 말단의 텔로미어 함량이 유의적으로 높은 것으로 분석되었고, 전체적으로 거의 모든 염색체에서 소, 돼지 공히 q-arm 말단주의 함유율이 p-arm 말단부에 비해 높은 것으로 나타났다. 또한, 염색체상 텔로미어의 상대적 함유율은 소가 돼지에 비해 높게 나타났으며, 전체 염색체 중 텔로미어의 상대적 함유율은 소, 돼지 모두 Y 염색체에서 가장 높았다.