• Title/Summary/Keyword: Chromosomal abnormal

Search Result 62, Processing Time 0.024 seconds

Genotoxicity in B6C3F1 Mice Following 0.5 ppm Ozone Inhalation

  • Kim, Min-Young;Son, Jang-Won;Cho, Myung-Haing
    • Toxicological Research
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • To determine whether ozone is genotoxic at environmentally relevant exposure level, B6C3F1 mice were exposed to 0.5 ppm ozone for 12 weeks, 6 hr/day. Chromosomal aberration, supravital micronucleus and hprt mutation assays were performed. The percentage of abnormal cells was significantly increased at 0.5 ppm ozone when compared to unexposed control in chromosome aberration assay. Significant increase in the frequencies of micro nucleated reticulocytes and 6-thioguanine-resistant ($TG^r$) lymphocytes was also observed in supravital micronucleus assay using peripheral blood and lymphocyte hprt mutation assay, respectively. The results indicate, that under our experimental conditions, 0.5 ppm ozone are genotoxic in exposed B6C3F1 mice.

  • PDF

Prenatal diagnosis of 5p deletion syndrome: A case series report

  • Han, You Jung;Kwak, Dong Wook
    • Journal of Genetic Medicine
    • /
    • v.14 no.1
    • /
    • pp.34-37
    • /
    • 2017
  • 5p deletion syndrome, also known as Cri-du-Chat syndrome, is a chromosomal abnormality caused by a deletion in the short arm of chromosome 5. Clinical features of 5p deletion syndrome are difficult to identify prenatally by ultrasound examination, thus most cases of 5p deletion syndrome have been diagnosed postnatally. Here, we report eight cases of 5p deletion syndrome diagnosed prenatally, but were unable to find common prenatal ultrasound findings among these cases. However, we found that several cases of 5p deletion syndrome were confirmed prenatally when karyotyping was performed on the basis of abnormal findings in a prenatal ultrasound scan. Hence, it is necessary to carefully perform prenatal ultrasonography for detection of rarer chromosomal abnormalities as well as common aneuploidy.

Studies on the Effects of Steroids on DNA Synthesis of Chromosmoes in Synchronized Human Cells (同時分裂促進된 사람의 培養細胞에 있어서 染色體의 DNA 合成에 미치는 Steroids의 영향)

  • Kang, Yung Sun;Park, Sang Dai;Ryu, Chung Hee
    • The Korean Journal of Zoology
    • /
    • v.12 no.3
    • /
    • pp.85-93
    • /
    • 1969
  • The frequencies of chromosomal aberrations, unmerical variations at various time intervals and DNA synthetic patterns after the treatment with steroids in synchronized human kidney cells treated with 5-AU were investigated in the present experiment. 1. In 5-AU treated group, the frequency of chromosomal aberrations per cell was 0.131, 3 times of control group. In 5-AU + progesterone and 5-AU + testosterone groups, the frequency of chromosomal aberrations per cell was 0.340 and 0.452 respectively. 2. In 5-AU treated group, the frequency of cells with abnormal chromosome number was 0.8%, which was distributed throughout the time regardless of time interval. In 5-AU + progesterone and 5-AU + testosterone groups, the frequencies of cells with abnormal chromosome number were 2.2% and 4.3% respectively and they increased with the time. In 5-AU + progesterone group, the frequency of chromosomal aberrations exhiited the peaks at 12 and 18 hour stage after the treatment with steroids and, in 5-AU + testosterone group, it decreased with the time and in 5-AU treated group no significant difference was observed 3. The increase of labeled metaphases and labelling intensities in 5-AU treated cells are the result of the accumulation of cells at S stage by 5-AU. The decrease of labeled metaphases, labelling intensities and the delay of DNA synthetic time were observed in steroid groups. DNA synthetic pattern of sex chromosomes differs according to the step of cell cycle and DNA synthetic time is irregular because of double treatments with 5-AU and steroids.

  • PDF

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

The clinical usefulness of non-invasive prenatal testing in pregnancies with abnormal ultrasound findings

  • Boo, Hyeyeon;Kim, So Yun;Seoung, Eui Sun;Kim, Min Hyung;Kim, Moon Young;Ryu, Hyun Mee;Han, You Jung;Chung, Jin Hoon
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • Purpose: This study aimed to evaluate the clinical usefulness of non-invasive prenatal testing (NIPT) as an alternative testing of invasive diagnostic testing in pregnancies with ultrasound abnormalities. Materials and Methods: This was a retrospective study of pregnant women with abnormal ultrasound findings before 24 weeks of gestation between April 2016 and March 2017. Abnormal ultrasound findings included isolated increased nuchal translucency, structural anomalies, and soft markers. The NIPT or diagnostic test was conducted and NIPT detected trisomy 21 (T21), T18, T13 and sex chromosomal abnormalities. We analyzed the false positive and residual risks of NIPT based on the ultrasound findings. Results: During the study period, 824 pregnant women had abnormal ultrasound findings. Among the study population, 139 patients (16.9%) underwent NIPT. When NIPT was solely performed in the patients with abnormal ultrasound findings, overall false positive risk was 2.2% and this study found residual risks of NIPT. However, the discordant results of NIPT differed according to the type of abnormal ultrasound findings. Discordant results were significant in the group with structural anomalies with 4.4% false positive rate. However, no discordant results were found in the group with single soft markers. Conclusion: This study found different efficacy of NIPT according to the ultrasound findings. The results emphasize the importance of individualized counseling for prenatal screening or diagnostic test based on the type of abnormal ultrasound.

Cytoskeletal Alteration of Mammalian Oocytes During Meiotic Maturation, Fertilization and Parthenogenesis

  • Kim, Nam-Hyeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.22 no.3
    • /
    • pp.253-258
    • /
    • 1995
  • Microtubules and microfilaments are major cytoskeletal components in mammalian ova that provide the framework for chromosomal movement and cellular division. Extensive changes of cytoskeletal organization occur during maturation and fertilization. The changes in cytoskeletons are essential for the normal meiotic maturation and for the formation of the biparental diploid genome of the embryo, and thus are repeated at each cell cycle during embryonic development. Disturbance of the cytoskeletal organization could result in abnormal gamete development and early embryonic death.

  • PDF

Prenatal detection of Xq deletion by abnormal noninvasive prenatal screening, subsequently diagnosed by amniocentesis: A case report

  • Kim, Bo Ram;Kim, Rina;Cho, Angela;Kang, Hye Sim;Park, Chul Min;Kim, Sung Yob;Shim, Soon Sup
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.117-120
    • /
    • 2021
  • We experienced a case of Xq deletion -- 46,X,del(X)(q22.3) -- detected by abnormal noninvasive prenatal screening, subsequently diagnosed by amniocentesis. Genetic counseling was a challenge because there are few reports of prenatal diagnosis of Xq deletion. In each female cell, one X chromosome is inactivated at random early in development, and there may be a preferential inactivation of the abnormal X chromosome. But some proportions of genes escape inactivation. The most common manifestation in women with Xq deletion is primary or secondary ovarian failure. Critical regions for ovarian function may be located at the long arm of the X chromosome. But, the onset and the severity of ovarian failure may vary with diverse, intricate factors. We anticipate that noninvasive prenatal screening can identify the broader range of chromosomal or genetic abnormalities with the advances in technology and analytic methods. We report our case with a brief review of the literature.

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • K. S. Chung;Ko, S. A;S. J. Song;J. T. Do;Park, Y. S.;Lee, H. T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.385-394
    • /
    • 2002
  • This study was constructed the correlations of the embryonic developmental rates and the frequency of chromosome aberration using ear-skin-fibroblast cell in nuclear transfer (NT) derived embryos. Karyoplast-oocyte complexes were fused and activated simultaneously, then cultured for seven days to assess development. The developmental rates of NT and in vitro fertilization (IVF) embryos were 55.4% vs 63.5%, 31.7% vs 33% and 13.4% vs 16.8% in 2 cell, 8 cell and blastocyst, respectively. Firstly, the frequency of chromosome aberrations were evaluated using fluorescent in situ hybridization (FISH) technique with porcine chromosome 1 submetacentric specific probe. Chromosome aberration was detected at day 3 on the embryo culture, the percentages of chromosomal aneuploidy in NT and IVF embryos at 4-cell stage were 40%, 31.3%, respectively. Secondly, embryonic fragmentation was evaluated at 4-cell stage embryo. Frequency of embryonic fragmentations was in 51.3% of NT, 61.3% of IVF, 28.9% of parthenogenetic activation at 4-cell stage. The proportion of fragmentation in NT embryos was higher than activation embryos. This result indicates that chromosomal abnormalities and embryonic fragments are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT related with lower implantation rate, increased abortion rate and production of abnormal fetuses.

Clinical profile and cytogenetic correlations in females with primary amenorrhea

  • Divya Chandel;Priyanka Sanghavi;Ramtej Verma
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.3
    • /
    • pp.192-199
    • /
    • 2023
  • Objective: This study was conducted to investigate chromosomal abnormalities and their correlations with clinical and radiological findings in females with primary amenorrhea (PA). Methods: Detailed forms were recorded for 470 females, including the construction of three-generation pedigrees. Peripheral venous blood was drawn, with informed consent, for cytogenetic analysis. Results: An abnormal karyotype was found in 16.38% of participants. The incidence of structural abnormalities (6.8%) exceeded that of numerical abnormalities (6.15%). Turner syndrome represented 45% of all numerical abnormalities. Furthermore, the Y chromosome was detected in 5% of females with PA. Among the structural chromosomal abnormalities detected (n=32) were mosaicism (25%), deletions (12.5%), isochromosomes (18.75%), fragile sites (3.12%), derivatives (3.12%), marker chromosomes (3.12%), and normal variants (29.125%). An examination of secondary sexual characteristics revealed that 29.6% of females had a complete absence of breast development, 29.78% lacked pubic hair, and 36.88% exhibited no axillary hair development. Radiological findings revealed that 51.22% of females had a hypoplastic uterus and 26.66% had a completely absent uterus. Abnormal ovarian development, such as the complete absence of both ovaries, absence of one ovary, one absent and other streak, or both streak ovaries, was observed in 69.47% of females with PA. Additionally 43.1%, 36.1%, 67.4%, and 8% of females had elevated levels of serum follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone, and prolactin, respectively. Conclusion: This study underscores the importance of karyotyping as a fundamental diagnostic tool for assessing PA. The cytogenetic correlation with these profiles will aid in genetic counseling and further management of the condition.

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk;Lee, Jong-Soo
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.164-173
    • /
    • 2013
  • Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.