• 제목/요약/키워드: Chromosomal Localization

검색결과 28건 처리시간 0.034초

Bacillus cellulyticus K-12 Crystalline Cellulose-Degrading Avicelase Gene and Expression in Eschterichia coli

  • Cheorl-Ho Kim;Woo
    • 한국식품영양학회지
    • /
    • 제6권4호
    • /
    • pp.314-321
    • /
    • 1993
  • We have cloned the Bacillus cellulyticus K-12 avicelase (Avi, E.C.3.2.1.4) gene (ace A) In E. coli. This was accompanied by using the vector PT7T3U 19 and Hind W -Hind m libraries of Bacillus cellulyticus K-12 chromosomal inserts created in 5.cofi. The Libraries were screened for the expression of avicelase by monitoring the immunoreaction of the anti-avicelase (immunoscreening). Positive clones (Ac-3, Ac-5, and Ac-7) contained the identical 3.5kb Hind III fragment as determined by restriction mapping and Southern hybridization, and expressed avicelase efficiently and constituvely using its own promoter in the heterologous host. From the immunoblotting analysis, a polypeptide which showed a CMCase activity with an Mr of 54000 was detected.

  • PDF

Localization of 5,105 Hanwoo (Korean Cattle) BAC Clones on Bovine Chromosomes by the Analysis of BAC End Sequences (BESs) Involving 21,024 Clones

  • Choi, Jae Min;Chae, Sung-Hwa;Kang, Se Won;Choi, Dong-Sik;Lee, Yong Seok;Park, Hong-Seog;Yeo, Jung-Sou;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1636-1650
    • /
    • 2007
  • As an initial step toward a better understanding of the genome structure of Korean cattle (Hanwoo breed) and initiation of the framework for genomic research in this bovine, the bacterial artificial chromosome (BAC) end sequencing of 21,024 clones was recently completed. Among these clones, BAC End Sequences (BESs) of 20,158 clones with high quality sequences (Phred score ${\geq}20$, average BES equaled 620 bp and totaled 23,585,814 bp), after editing sequencing results by eliminating vector sequences, were used initially to compare sequence homology with the known bovine chromosomal DNA sequence by using BLASTN analysis. Blast analysis of the BESs against the NCBI Genome database for Bos taurus (Build 2.1) indicated that the BESs from 13,201 clones matched bovine contig sequences with significant blast hits (E<$e^{-40}$), including 7,075 single-end hits and 6,126 paired-end hits. Finally, a total of 5,105 clones of the Korean cattle BAC clones with paired-end hits, including 4,053 clones from the primary analysis and 1,052 clones from the secondary analysis, were mapped to the bovine chromosome with very high accuracy.

The transposition pattern of the Ac element and its use for targeted transposition in Arabidopsis thaliana

  • Machida, Yasunori;Onouchi, Hitoshi;Tanaka, Hirokazu;Hamada, Susumu;Ishikawa, Takaaki;Semiarti, Endang;Iwakawa, Hidekazu;Nomura, Kiyohito;Machida, Chiyoko
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.11-15
    • /
    • 1999
  • In order to evlauate feasibility of the gene tagging by the maize transposable element Ac in heterologous plant systems, we have investigated physical distances and directions of transposition of the element in Arabidopsis thaliana and tobacco cultured cell line BY-2. We prepared a T-DNA construct that carried a non-autonomous derivative of Ac with a site for cleavage by endonuclease I-Scel (designated dAc-I-RS element). Another cleavage site was also introduced into the T-DNA region outside dAc-I-RS. A number of transgenic Arabidopsis plants were generated, each of which had a single copy of the T-DNA at a different chromosomal location. To examine the pattern of transposition, three out of these transgenic plants were crossed with the Arabidopsis plant that carried the gene for Ac transposase and progeny in which dAc-I-RS had been transposed were isolated. After digestion of the genomic DNA of these progeny with I-SceI, sizes of segment of DNA were determined byd pulse-field gel electrophoresis. We also performed linkage analysis for the transposed elements and sites of mutations near the elements. Our results with three transgenic lines showed that 50% of all transposition events had occurred within 1,700 kilo-base pairs (kb) on the same chromosome, with 35% within 200 kb, and that the elements transposed in both directions on the chromosome with roughly equal probability. The data thus indicate that the Ac-Ds system is most useful for tagging of genes that are present within 200 kb of the chromosomal site of Ac in Arabidopsis. In addition, determination of the precise localization of the transposed dAc-I-RS element should definitely assist in map-based cloning of genes around insertion sites. In the present paper, we report typical examples of such gene isolation studies.

  • PDF

세포내의 물의 상태

  • 강사욱
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1985년도 워크샵 및 심포지엄 북한산국립공원의 식생
    • /
    • pp.51-57
    • /
    • 1985
  • In order to evlauate feasibility of the gene tagging by the maize transposable element Ac in heterologous plant systems, we have investigated physical distances and directions of transposition of the element in Arabidopsis thaliana and tobacco cultured cell line BY-2. We prepared a T-DNA construct that carried a non-autonomous derivative of Ac with a site for cleavage by endonuclease I-Scel (designated dAc-I-RS element). Another cleavage site was also introduced into the T-DNA region outside dAc-I-RS. A number of transgenic Arabidopsis plants were generated, each of which had a single copy of the T-DNA at a different chromosomal location. To examine the pattern of transposition, three out of these transgenic plants were crossed with the Arabidopsis plant that carried the gene for Ac transposase and progeny in which dAc-I-RS had been transposed were isolated. After digestion of the genomic DNA of these progeny with I-SceI, sizes of segment of DNA were determined byd pulse-field gel electrophoresis. We also performed linkage analysis for the transposed elements and sites of mutations near the elements. Our results with three transgenic lines showed that 50% of all transposition events had occurred within 1, 700 kilo-base pairs (kb) on the same chromosome, with 35% within 200 kb, and that the elements transposed in both directions on the chromosome with roughly equal probability. The data thus indicate that the Ac-Ds system is most useful for tagging of genes that are present within 200 kb of the chromosomal site of Ac in Arabidopsis. In addition, determination of the precise localization of the transposed dAc-I-RS element should definitely assist in map-based cloning of genes around insertion sites. In the present paper, we report typical examples of such gene isolation studies.

  • PDF

헐떡이풀의 핵형분석과 Bicolor FISH를 이용한 물리적 지도 작성 (Karyotype Analysis and Physical Mapping of rDNAs Using Bicolor-FISH in Tiarella polyphylla D. Don)

  • 김수영;이중구
    • 한국자원식물학회지
    • /
    • 제20권5호
    • /
    • pp.446-450
    • /
    • 2007
  • 헐떡이풀은 다년생 초본으로 중국, 일본, 대만 그리고 한국에 분포한다. 특히 우리나라에서는 울릉도에서만 분포하는데, 천식 치료, 타박상 그리고 청각장애의 치료에 사용된다. 약용작물로써의 높은 가치에도 불구하고 염색체 수를 제외한 다른 세포유전학적인 연구가 거의 이루어지지 않았다. 따라서 핵형분석 뿐만 아니라 bicolor FISH를 통한 5S 와 45S rDNA의 물리적 지도작성에 관한 연구가 수행되었다. 체세포 염색체 수는 2n=2x=14로 염색체의 길이는 $1.66{\sim}3.50{\mu}m$ 이다. 또한 염색체의 구성은 4쌍의 차중부 염색체(염색체 1, 2, 3, 6)와 2쌍의 차단부 염색체(염색체 5, 7)그리고 1쌍의 단부 염색체(염색체 4)로 확인되었다. 또한 4번 염색체가 부수체 염색체로 관찰되었다. Bicolor-FISH를 통해 각각 1쌍의 5S와 45S rDNA 위치를 확인하였는데, 5S rDNA의 경우 염색체 3번의 동원체 부위에서 확인되었고, 45S rDNA는 염색체 4번의 단완 말단 부위에서 관찰되었다. Bicolor-FISH는 헐떡이풀 염색체상에 rDNA 유전자의 위치 확인에 매우 유용한 정보를 제공하는 기술로 사용되었다.

Comprehensive analysis of AHL homologous genes encoding AT-hook motif nuclear localized protein in rice

  • Kim, Ho-Bang;Oh, Chang-Jae;Park, Yung-Chul;Lee, Yi;Choe, Sung-Hwa;An, Chung-Sun;Choi, Sang-Bong
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.680-685
    • /
    • 2011
  • The AT-hook motif is a small DNA-binding protein motif that has been found in the high mobility group of non-histone chromosomal proteins. The Arabidopsis genome contains 29 genes encoding the AT-hook motif DNA-binding protein (AHL). Recent studies of Arabidopsis genes (AtAHLs) have revealed that they might play diverse functional roles during plant growth and development. In this report, we mined 20 AHL genes (OsAHLs) from the rice genome database using AtAHL genes as queries and characterized their molecular features. A phylogenetic tree revealed that OsAHL proteins can be classified into 2 evolutionary clades. Tissue expression pattern analysis revealed that all of the OsAHL genes might be functionally expressed genes with 3 distinct expression patterns. Nuclear localization analysis using transgenic Arabidopsis showed that several OsAHL proteins are exclusively localized in the nucleus, indicating that they may act as architectural transcription factors to regulate expression of their target genes during plant growth and development.

The Replication Protein Cdc6 Suppresses Centrosome Over-Duplication in a Manner Independent of Its ATPase Activity

  • Kim, Gwang Su;Lee, Inyoung;Kim, Ji Hun;Hwang, Deog Su
    • Molecules and Cells
    • /
    • 제40권12호
    • /
    • pp.925-934
    • /
    • 2017
  • The Cdc6 protein is essential for the initiation of chromosomal replication and functions as a licensing factor to maintain chromosome integrity. During the S and G2 phases of the cell cycle, Cdc6 has been found to inhibit the recruitment of pericentriolar material (PCM) proteins to the centrosome and to suppress centrosome over-duplication. In this report, we analyzed the correlation between these two functions of Cdc6 at the centrosome. Cdc6 depletion increased the population of cells showing centrosome over-duplication and premature centrosome separation; Cdc6 expression reversed these changes. Deletion and fusion experiments revealed that the 18 amino acid residues (197-214) of Cdc6, which were fused to the Cdc6-centrosomal localization signal, suppressed centrosome over-duplication and premature centrosome separation. Cdc6 mutant proteins that showed defective ATP binding or hydrolysis did not exhibit a significant difference in suppressing centrosome over-duplication, compared to the wild type protein. In contrast to the Cdc6-mediated inhibition of PCM protein recruitment to the centrosome, the independence of Cdc6 on its ATPase activity for suppressing centrosome over-duplication, along with the difference between the Cdc6 protein regions participating in the two functions, suggested that Cdc6 controls centrosome duplication in a manner independent of its recruitment of PCM proteins to the centrosome.

Multicolor FISH와 Feulgen 염색법을 이용한 Angelica속 식물의 세포유전학적 분석 (Cytogenetic Analyses of Angelica Plants Using Feulgen Staining and Multicolor Fluorescence in Situ Hybridization)

  • 구달회;김수영;방경환;성낙술;방재욱
    • Journal of Plant Biotechnology
    • /
    • 제30권2호
    • /
    • pp.123-127
    • /
    • 2003
  • Karyotype analysis and chromosomal localization of 5S and 45S rDNAs using multi-color fluorescence in situ hybridization (McFISH) technique were carried out in two Angelica species. The numbers of diploid chromosomes were the same in two same in two species as 2n=22, however the lengths of chromosomes were varied from 4.25 to 6.50 ${\mu}{\textrm}{m}$ in A gigas and 4.95 to 8.50 ${\mu}{\textrm}{m}$ in A acutiloba. The chromosomes of A. gigas were composed of five metacentric and six submetacentric pairs, while those of A. acutiloba were six metacentic, one submetacentric and four subtelocentric paris. In FISH experiments, the numbers and size of 45S rDNA signals were varied between two species, however dach signal of the 5S rDNA was observed in two species.

Establishment of a Simple and Effective Method for Isolating Male Germline Stem Cells (GSCs) from Testicular Cells of Neonatal and Adult Mice

  • Kim Kye-Seong;Lim Jung-Jin;Yang Yun-Hee;Kim Soo-Kyoung;Yoon Tae-Ki;Cha Kwang-Yul;Lee Dong-Ryul
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1347-1354
    • /
    • 2006
  • The aims of this study were to establish a simple and effective method for isolating male germline stem cells (GSCs), and to test the possibility of using these cells as a new approach for male infertility treatment. Testes obtained from neonatal and adult mice were manually decapsulated. GSCs were collected from seminiferous tubules by a two-step enzyme digestion method and plated on gelatin-coated dishes. Over 5-7 days of culture, GSCs obtained from neonates and adults gave rise to large multicellular colonies that were subsequently grown for 10 passages. During in vitro proliferation, oct-4 and two immunological markers (Integrin ${\beta}1,\;{\alpha}6$) for GSCs were highly expressed in the cell colonies. During another culture period of 6 weeks to differentiate to later stage germ cells, the expression of oct-4 mRNA decreased in GSCs and Sertoli cells encapsulated with calcium alginate, but the expression of c-kit and testis-specific histone protein 2B(TH2B) mRNA as well as the localization of c-kit protein was increased. Expression of transition protein (TP-l) and localization of peanut agglutinin were not seen until 3 weeks after culturing, and appeared by 6 weeks of culture. The putative spermatids derived from GSCs supported embryonic development up to the blastocyst stage with normal chromosomal ploidy after chemical activation. Thus, GSCs isolated from neonatal and adult mouse testes were able to be maintained and proliferated in our simple culture conditions. These GSCs have the potential to differentiate into haploid germ cells during another long-term culture.

Cloning and Functional Characterization of Ptpcd2 as a Novel Cell Cycle Related Protein Tyrosine Phosphatase that Regulates Mitotic Exit

  • Zineldeen, Doaa H.;Wagih, Ayman A.;Nakanishi, Makoto
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3669-3676
    • /
    • 2013
  • Faithful transmission of genetic information depends on accurate chromosome segregation as cells exit from mitosis, and errors in chromosomal segregation are catastrophic and may lead to aneuploidy which is the hallmark of cancer. In eukaryotes, an elaborate molecular control system ensures proper orchestration of events at mitotic exit. Phosphorylation of specific tyrosyl residues is a major control mechanism for cellular proliferation and the activities of protein tyrosine kinases and phosphatases must be integrated. Although mitotic kinases are well characterized, phosphatases involved in mitosis remain largely elusive. Here we identify a novel variant of mouse protein tyrosine phosphatase containing domain 1 (Ptpcd1), that we named Ptpcd2. Ptpcd1 is a Cdc14 related centrosomal phosphatase. Our newly identified Ptpcd2 shared a significant homology to yeast Cdc14p (34.1%) and other Cdc14 family of phosphatases. By subcellular fractionation Ptpcd2 was found to be enriched in the cytoplasm and nuclear pellets with catalytic phosphatase activity. By means of immunofluorescence, Ptpcd2 was spatiotemporally regulated in a cell cycle dependent manner with cytoplasmic abundance during mitosis, followed by nuclear localization during interphase. Overexpression of Ptpcd2 induced mitotic exit with decreased levels of some mitotic markers. Moreover, Ptpcd2 failed to colocalize with the centrosomal marker ${\gamma}$-tubulin, suggesting it as a non-centrosomal protein. Taken together, Ptpcd2 phosphatase appears a non-centrosomal variant of Ptpcd1 with probable mitotic functions. The identification of this new phosphatase suggests the existence of an interacting phosphatase network that controls mammalian mitosis and provides new drug targets for anticancer modalities.