• Title/Summary/Keyword: Chromium-on-quartz

Search Result 11, Processing Time 0.021 seconds

Case study of Hexavalent Chromium and Silica Exposure Assessment and Respiratory Fit-test for Paint Manufacturing Worker (페인트 제조 작업자의 6가 크롬 및 실리카 노출평가와 호흡보호구 밀착도 검사 사례)

  • Lee, Hyun Seok;Kim, Boowook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.295-303
    • /
    • 2021
  • Objective: Paint manufacturing industry workers are exposed to various lung cancer carcinogenic substances including hexavalent chromium and crystalline silica. Studies have been conducted on lung cancer in Paint manufacturing industry workers and the concentration of hexavalent chromium in paint industry; however, the concentration of crystalline silica and hexavalent chromium and cases of lung cancer in a single Paint factory has never been reported in Korea. Methods: To determine whether the cancer was related to his work environment, we assessed the level of exposure to carcinogens during pouring and mixing talc and pigment. In addition, a mask fit test was performed for the worker. Results: Analysis of talc and silica bulk powder materials showed that crystalline silica (quartz) was 5% in talc and 100% in silica. The green and yellow pigments contained 87% and 92% of lead chromate, respectively. Our quantitative analysis of pigment powder samples showed that the hexavalent chromium contents quantified in the green and yellow pigment samples were 87% and 92%, respectively. In order to estimate his exposure level of hexavalent chromium, we measured a personal exposure level of hexavalent chromium for a worker in accordance with the National Institute for Occupational Safety and Health #7605 method. The results showed that the worker was exposed to the high level of hexavalent chromium (0.033 mg m-3). In addition, the talc powder also contained 5% quartz, and the worker's exposure level to respirable quartz exceeded OEL. As a result of the respiratory protection fit test for workers, the overall Fit Factor was '15' when wearing a second-grade mask and '25' when wearing a first-grade mask, significantly lower than the US Occupational Safety and Health Agency (OSHA) pass value of "100". Conclusion: Workers who pouring and mixing powder materials such as talc or colored pigments in paint manufacturing company may be exposed to high concentrations of carcinogenic substances. These findings indicate that it is necessary to local ventilation system inspection, safety and health education for employers and workers, and periodically monitoring and manage the working environment.

Investigation of the Effect of Acidity and Polyethylene Glycol on Electrochemical Deposition of Trivalent Chromium Ions

  • Phuong, N.V.;Kwon, S.C.;Lee, J.Y.;Kim, M.;Lee, Y.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.47-48
    • /
    • 2011
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of solution stability, electroreduction of trivalent chromium ions and characterization of deposition layer. It was found that, the concentration of fraction chromium complexes in the trivalent chromium bath containing formic acid is strongly depended on pH value. PEG molecules were stable in trivalent chromium bath containing formic acid via studies on electrospray ionization mass spectrometry (ESI-MS) and UV-Vis. However, the presence of PEG molecules decreased the reductive current of hydrogen evolution, increasing of current efficiency higher about 10 % compared with solutions without PEG. Moreover, PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at a low speed. In this study, the effect of solution acidity was emphasized important, there, it controlled the formation of complexes in the solution, cathodic film (CF) during deposition, and properties of deposited layer. By electrochemical quartz crystal microbalance (EQCM), studies show that chromium electrodeposition occurs via the formation of intermediate complexes and adsorption on the cathode surface, which hinder the penetration of ions from bulk solution to the cathode surface.

  • PDF

Microlens fabricated by laser irradiation (레이저를 이용한 마이크로렌즈 제조에 관한 연구)

  • 윤경구;이성국;김재구;김철새;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.748-751
    • /
    • 2000
  • Microlens made by laser radiation method have advantages in the easiness of their fabrication. The process is based on the projection of a chromium-on-quartz reticle on to the Polymer using a pulsed 248nm KrF excimer laser. Fabrication process is a fluence-dependent rate and density. The lens shape is defined by a rotationally symmetric sluence distribution with smooth radial variation in the image plane of the reticle. A typical lens of 50㎛ diameter was fabricated by irradiating 2000 laser pulses within 40 seconds. The experimental results show microlens fabrication by UV laser is possible and well worth studying further.

  • PDF

Microlens Fabrication by Using Excimer Laser (엑사이머 레이저를 이용한 마이크로렌즈 제작)

  • 김철세;김재도;윤경구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Comparison of Sampling Filters for Airborne Hexavalent Chromium in Plating Operation (도금공정 공기중 6가 크롬 시료채취여과지 비교에 관한 연구)

  • 이병규;신용철
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.69-76
    • /
    • 2003
  • Hexavalent chromium may reduce on polyvinyl chloride (PVC) filter during sampling and storage of sample. Recently, new or modified filters for preventing Cr(VI) from the reduction has been introduced. Thus, this study was performed to compare the reduction behaviors of Cr(VI) on several sampling filters and to find the most appropriate filter for airborne Cr(VI) sampling in plating operation. The results were as follows. 1. There were statistically significant differences among PVC, polytetrafluoroethylene (PTFE). glass fiber (GF) and polyvinylidene fluoride (PVDF) filters in recovery rates of spiked Cr(VI) samples by storage time(p<0.05). There was no significant difference between PVC and PTFE filters(p>0.05). The PVC and PTFE filters showed higher recoveries than GF and PVDF filters(p<0.05). 2. The quartz fiber(QF) filter treated with an alkali solution(2% NaOH/3% Na$_2$CO$_3$, 1% NaOH) showed a significantly higher recovery of Cr(VI) by storage time than other filters(GF and QF filter)(p<0.05). There was no difference in recovery of Cr(VI) between alkali-treated and untreated GF it filters(p>0.05). But the QF filters treated with two alkali solution showed a significantly higher recovery than the untreated QF filter(p<0.05). There was no significant difference in recovery of Cr(VI) between QF filters treated with 1% NaOH and 2% NaOH/3% Na$_2$CO$_3$(p>0.05). In conclusion, treatment of QF fillers with alkali solution was most effective in protecting from the reduction of Cr(VI).

Investigation of the Effect of Solution Acidity and Organic Additives on the Electrodeposition of Trivalent Chromium Ions (3가크롬 이온의 전착 반응에 용액 산도 및 유기물 첨가제가 미치는 영향 연구)

  • Lee, Joo-Yul;Van Phuong, Nguyen;Kang, Dae-Keun;Kim, Man;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.297-303
    • /
    • 2010
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of electroreduction of trivalent chromium ions and solution stability. It was found that solution acidity controlled at pH 2.5 showed the widest current range for bright electrodeposits in the presence of PEG additives, which reduced the local current intensification at high current densities. Through complex interaction between PEG additives and hydrogen ion, that is, solution acidity, electrode potential was moved in the negative direction in the bulk solution, while it shifted in the positive when electric potential was scanned. In conjunction with electrochemical quartz crystal microbalance (EQCM), it was found that PEG additives had a role in promoting the electron transfer to trivalent chromium ion complexes in bulk solution and their adsorption at the electrode surface as well as interfering with hydrogen ion reduction process below pH 2.5. The PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at low speed.

Status of Handling Carcinogenic, Mutagenic, and Reproductive Toxic Materials Contained in Oil Paint-related Products used by Automobile Maintenance Companies in Busan (부산지역 자동차정비업체에서 사용하는 유용성도료 관련 제품에 함유된 발암성, 생식세포변이원성, 생식독성 물질 취급 현황)

  • Eunseok Kim;Jiyoung Chun;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2023
  • Objectives: The handling of carcinogenic, mutagenic or reproductive toxic (CMR) materials in paint-related products used by automobile maintenance companies in Busan was investigated and its characteristics were analyzed. Methods: MSDS for paint-related chemical products used by automobile repair companies in Busan were collected and the manufacturers, product uses, names of chemical substances in each component, CAS numbers, content, and more were listed. Results: As a result of collecting MSDS on 4,800 kinds of products handled in the painting process of automobile repair companies in Busan and comparing them with the latest toxic information database, 60 out of a total of 438 substances were found as CMR materials. Seven carcinogens (1A), including quartz, benzene, formaldehyde, and hexavalent chromium, were present. Two reproductive toxic 1A substances were included: hexavalent chromium in paint pigments and lead. Conclusions: Most of the products (95.5%) were found to contain at least of one CMR component, so it was judged that a study on exposure assessment of CMR substances by automobile maintenance workers is needed in the future.

Influence of modification in core building procedure on fracture strength and failure patterns of premolars restored with fiber post and composite core

  • Kim, Young-Hoi;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • PURPOSE. The influence of the modified process in the fiber-reinforced post and resin core foundation treatment on the fracture resistance and failure pattern of premolar was tested in this study. MATERIALS AND METHODS. Thirty-six human mandibular premolars were divided into 4 groups (n = 9). In group DCT, the quartz fibre post (D.T. Light-post) was cemented with resin cement (DUO-LINK) and a core foundation was formed with composite resin (LIGHT-CORE). In group DMO and DMT, resin cement (DUO-LINK) was used for post (D.T. Lightpost) cementation and core foundation; in group DMO, these procedures were performed simultaneously in one step, while DMT group was accomplished in separated two steps. In group LCT, the glass fiber post (LuxaPost) cementation and core foundation was accomplished with composite resin (LuxaCore-Dual) in separated procedures. Tooth were prepared with 2 mm ferrule and restored with nickel-chromium crowns. A static loading test was carried out and loads were applied to the buccal surface of the buccal cusp at a 45 degree inclination to the long axis of the tooth until failure occurred. The data were analyzed with MANOVA (${\alpha}$= .05). The failure pattern was observed and classified as either favorable (allowing repair) or unfavorable (not allowing repair). RESULTS. The mean fracture strength was highest in group DCT followed in descending order by groups DMO, DMT, and LCT. However, there were no significant differences in fracture strength between the groups. A higher prevalence of favorable fractures was detected in group DMT but there were no significant differences between the groups. CONCLUSION. The change of post or core foundation method does not appear to influence the fracture strength and failure patterns.

The Sulfidation and Oxidation Behavior of Sputter-Deposited Nb-Al-Cr Alloys at High Temperatures

  • Habazaki, Hiroki;Yokoyama, Kazuki;Konno, Hidetaka
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • Sputter-deposited Nb-Al-Cr alloys. $3-5{\mu}m$ thick, have been prepared on quartz substrates as oxidation-and sulfidation-resistant materials at high temperatures. The oxidation or the alloys in the $Ar-O_2$ atmosphere of an oxygen partial pressure of 20 kPa follows approximately the parabolic rate law, thus being diffusion controlled. Their oxidation rates are almost the same as or even lower than those ofthc typical chromia-forming alloys. The multi-lavered oxide scales are formed on the ternary alloys. The outermost layer is composed of $Cr_2O_3$, which is"mainly responsible for the high oxidation'resistance of these alloys. In contrast to sputter-deposited Cr-Nb binary alloys reported previously, the inner layer is not porous. TEM observation as well as EDX analysis indicates that the innermost layer is a mixture of $Al_2O_3$ and niobium oxide. The dispersion of $Al_2O_3$ in niobium oxide may be attributable to the prevention of the formation of the porous oxide layer. The sulfidation rates of the present ternary alloys arc higher than those of the sputter-deposited Nb-AI binary alloys, but still several orders of magnitude lower than those of conventional high temperature alloys. Two-layered sulfide scales are formed, consisting of an outer $Al_2S_3$ layer containing chromium and an inner layer composed of $NbS_2$ and a small amount of $Cr_2S_3$. The presence of $Cr_2S_3$ in the inner protective $NbS_2$ layer may be attributed to the increase in the sulfidation rates.

Elemental Composition of the Soils using LIBS Laser Induced Breakdown Spectroscopy

  • Muhammad Aslam Khoso;Seher Saleem;Altaf H. Nizamani;Hussain Saleem;Abdul Majid Soomro;Waseem Ahmed Bhutto;Saifullah Jamali;Nek Muhammad Shaikh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.200-206
    • /
    • 2024
  • Laser induced breakdown spectroscopy (LIBS) technique has been used for the elemental composition of the soils. In this technique, a high energy laser pulse is focused on a sample to produce plasma. From the spectroscopic analysis of such plasma plume, we have determined the different elements present in the soil. This technique is effective and rapid for the qualitative and quantitative analysis of all type of samples. In this work a Q-switched Nd: YAG laser operating with its fundamental mode (1064 nm laser wavelength), 5 nanosecond pulse width, and 10 Hz repetition rate was focused on soil samples using 10 cm quartz lens. The emission spectra of soil consist of Iron (Fe), Calcium (Ca), Titanium (Ti), Silicon (Si), Aluminum (Al), Magnesium (Mg), Manganese (Mn), Potassium (K), Nickel (Ni), Chromium (Cr), Copper (Cu), Mercury (Hg), Barium (Ba), Vanadium (V), Lead (Pb), Nitrogen (N), Scandium (Sc), Hydrogen (H), Strontium (Sr), and Lithium (Li) with different finger-prints of the transition lines. The maximum intensity of the transition lines was observed close to the surface of the sample and it was decreased along the axial direction of the plasma expansion due to the thermalization and the recombination process. We have also determined the plasma parameters such as electron temperature and the electron number density of the plasma using Boltzmann's plot method as well as the Stark broadening of the transition lines respectively. The electron temperature is estimated at 14611 °K, whereas the electron number density i.e. 4.1 × 1016 cm-3 lies close to the surface.