• Title/Summary/Keyword: Chromium(Ⅲ)complex

Search Result 89, Processing Time 0.023 seconds

A REVIEW OF CANDU FEEDER WALL THINNING

  • Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.568-575
    • /
    • 2010
  • Flow Accelerated Corrosion is an active degradation mechanism of CANDU feeder. The tight bend downstream to Gray loc weld connection, close to reactor face, suffers significant wall thinning by FAC. Extensive in-service inspection of feeder wall thinning is very difficult because of the intense radiation field, complex geometry, and space restrictions. Development of a knowledge-based inspection program is important in order to guarantee that adequate wall thickness is maintained throughout the whole life of feeder. Research results and plant experiences are reviewed, and the plant inspection databases from Wolsong Units One to Four are analyzed in order to support developing such a knowledge-based inspection program. The initial thickness before wall thinning is highly non-uniform because of bending during manufacturing stage, and the thinning rate is non-uniform because of the mass transfer coefficient distributed non-uniformly depending on local hydraulics. It is obvious that the knowledge-based feeder inspection program should focus on both fastest thinning locations and thinnest locations. The feeder wall thinning rate is found to be correlated proportionately with QV of each channel. A statistical model is proposed to assess the remaining life of each feeder using the QV correlation and the measured thicknesses. W-1 feeder suffered significant thinning so that the shortest remaining life barely exceeded one year at the end of operation before replacement. W-2 feeder showed far slower thinning than W-1 feeder despite the faster coolant flow. It is believed that slower thinning in W-2 is because of higher chromium content in the carbon steel feeder material. The average Cr content of W-2 feeder is 0.051%, while that value is 0.02% for W-1 feeder. It is to be noted that FAC is reduced substantially even though the Cr content of W-2 feeder is still very low.

Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films (나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향)

  • Kim, Kyung-Tae;Lee, Jung-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.

Electronic Spectroscopy and Ligand Field Analysis of trans-[CrX2([15]aneN4)]+(X=F,CI) (trans-[CrX2([15]aneN4)]+(X=F,CI)의 전자분광학과 리간드장 해석)

  • Jong-Ha Choi;In-Gyung Oh;Sang Hak Lee;Yu Chul Park
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • The electronic absorption spectra of trans-$[CrX_2([15]aneN_4)]ClO_4\;([15]aneN_4$=1,4,8,12-tetraazacyclopentadecane; X=F, Cl) complexes have been interpreted using the ligand field theory. An AOMX program is used to optimize the differences between the calculated and the observed positions for the spin-allowed transition bands. The crystal field theory(CFT) parameter is directly related to the angular overlap model(AOM), normalized spherical harmonic hamiltonians(NSH), and semiempirical parameters. The various ligand field parameters are discussed in terms of their chemical significances. According to the ligand field analysis, we can confirm that the fluoride ligand is a very strong ${\sigma}-$ and ${\pi}-$donor while the chloride has weak ${\sigma}-$ and ${\pi}-$donor properties toward chromium(III) ion.

Synthesis and Characterization of Group VI Metal Carbonyl Complexes Containing closo-1,2-$(PPh_2)_2$-1,2-$C_2B_1_0H_1_0$ and Their Conversion to Metal Carbene Complexes

  • 박영일;김세진;고재정;강상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1061-1066
    • /
    • 1997
  • The complexes M(CO)4-1,2-(PPh2)2-1,2-C2B10H10 (M=Cr 2a, Mo 2b, W 2c) have been prepared in good yields from readily available bis-diphenylphosphino-o-carboranyl ligand, closo-1,2-(PPh2)2-1,2-C2B10H10 (1), by direct reaction with Group Ⅵ metal carbonyls. The infrared spectra of the complexes indicate that there is an octahedral disposition of chelate bis-diphenylphosphino-o-carboranyl ligand around the metal atom. The crystal structure of 2a was determined by X-ray diffraction. Complex 2a crystallizes in the monoclinic space group P21/n with cell parameters a = 12.2360(7), b = 17.156(1), c = 16.2040(6) Å, V = 3354.1(3) Å3, and Z =4. Of the reflections measured a total of 2514 unique reflections with F2 > 3σ(F2) was used during subsequent structure refinement. Refinement converged to R1 = 0.066 and R2 = 0.071. Structural studies showed that the chromium atom had a slightly distorted pseudo-octahedral configuration about the metal center with two phosphine groups of o-carborane occupying the equatorial plane cis-orientation to each other. These metal carbonyl complexes are rapidly converted to the corresponding metal carbene complexes, [(CO)3M=C(OCH3)(CH3)]-1,2-(PPh2)2-1,2-C2B10H10 (M= Cr 3a, Mo 3b, W 3c), via alkylation with methyllithium followed by O-methylation with CF3SO3CH3.

Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding (가스 질화를 통한 316L스테인리스강의 내식성 개선)

  • Hyunbin Jo;Serim Park;Jisu Kim;Junghoon Lee
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Austenitic stainless steel 316L has been used a lot of applications because of its high corrosion resistance and formability. In addition, copper brazing is employed to create complex shape of 316L stainless steel for various engineering parts. In such system, copper-based filler metals make galvanic cell at metal/filler metal interface, and it accelerates corrosion of stainless steel. Furthermore, Cu-rich region formed by diffused copper in austenitic stainless steel can promote a pitting corrosion. In this study, we used an ammonia (NH3) gas to nitride the 316L stainless steel for improving the corrosion resistance. The thickness of the nitride (nitrogen high) layer increased with the treatment temperature, and the surface hardness also increased. The potentiodynamic polarization test showed the improvement of corrosion resistance of 316L stainless steel by enhancing the passivation on nitride layer. However, in case of high temperature nitriding, a chromium nitride was formed and its fraction increased, so that the corrosion resistance was decreased compared to the intact 316L stainless steel.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols using Cr(VI)-Heterocyclic Complex(Cr(VI)-Isoquinoline) (Cr(VI)-헤테로고리 착물(Cr(VI)-Isoquinoline)를 이용한 치환 벤질 알코올류의 산화반응과 속도론에 관한 연구)

  • Park, Young-Cho;Kim, Young-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6000-6007
    • /
    • 2013
  • Cr(VI)-heterocyclic complex[Cr(VI)-isoquinoline] was synthesized by the reaction between of heterocyclic compound(isoquinoline) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using Cr(VI)-isoquinoline in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order : cyclohexene$CH_3$, m-Br, m-$NO_2$). Electron- donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.69(308K). The observed experimental data have been ratiolized. The hydride ion transfer causes the prior formation of a chromate ester in the rate-determining step.

Prioritizing Management Ranking for Hazardous Chemicals Reflecting Aggregate Exposure (통합노출을 고려한 유해물질 관리의 우선순위 선정)

  • Jeong, Ji-Yoon;Jung, Yoo-Kyung;Hwang, Myung-Sil;Jung, Ki-Kyung;Yoon, Hae-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, we configured a system which ranks hazardous chemicals to determine their management priorities based on experts' opinions and the existing CRS (chemical ranking and scoring). Aggregate exposure of food, health functional food, oriental/herbal medicine and cosmetics have been taken into account to determine management priority. In this study, 25 hazardous chemicals were selected, such as cadmium, lead, mercury, and arsenic, etc. These 25 materials were ranked according to their 1) risk (exposure or hazard) indexes, 2) exposure source-based weight, and 3) public interests, which were also formed based on the existing priority ranking system. Cadmium was scored the highest (178.5) and bisphenol A the lowest (56.8). Ten materials -- cadmium, lead, mercury, arsenic, tar, acrylamide, benzopyrene, aluminium, benzene, and PAHs -- scored higher than 100. Eight materials -- aflatoxin, manganese, phthalate, chromium, nitrate/nitrite, ethylcarbamate, formaldehyde, and copper -- recorded scores in the range from 70 to 100. Also evaluated as potential risks were 7 materials; sulfur dioxide, ochratoxin, dioxins, PCBs, fumonisin, methyl mercury, and bisphenol A, and these materials were scored above 50. Then we compared risk index and correlation coefficient of total scores to confirm the validity of the total scores; we analyzed correlation coefficient of parameter and indicator. We discovered that the total score and weight, which has incorporated public interests, were high and statistically significant. In conclusion, the result of this study contributes to strengthening risk assessment and risk management of hazardous chemicals.

Synthesis, Spectroscopic, and Biological Studies of Chromium(III), Manganese(II), Iron(III), Cobalt(II), Nickel(II), Copper(II), Ruthenium(III), and Zirconyl(II) Complexes of N1,N2-Bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide (N1,N2-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide의 크롬(III), 망간(II), 철(III), 코발트(II), 니켈(II), 구리(II), 루테늄(III) 및 산화 지르코늄(II) 착물에 대한 합성과 분광학 및 생물학적 연구)

  • Al-Hakimi, Ahmed N.;Shakdofa, Mohamad M.E.;El-Seidy, Ahemd M.A.;El-Tabl, Abdou S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.418-429
    • /
    • 2011
  • Novel chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), and zirconyl(II) complexes of $N^1,N^2$-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide ($H_4L$, 1) have been synthesized and characterized by elemental, physical, and spectral analyses. The spectral data showed that the ligand behaves as either neutral tridentate ligand as in complexes 2-5 with the general formula $[H_4LMX_2(H_2O)]{\cdot}nH_2O$ (M=Cu(II), Ni(II), Co(II), X = Cl or $NO_3$), neutral hexadentate ligand as in complexes 10-12 with the general formula $[H_4LM_2Cl_6]{\cdot}nH_2O$ (M=Fe(III), Cr(III) or Ru(III)), or dibasic hexadentate ligand as in complexes 6-9 with the general formula $[H_2LM_2Cl_2(H_2O)_4]{\cdot}nH_2O$ (M = Cu(II), Ni(II), Co(II) or Mn(II), and 13 with general formula $[H_4L(ZrO)_2Cl_2]{\cdot}8H_2O$. Molar conductance in DMF solution indicated the non-ionic nature of the complexes. The ESR spectra of solid copper(II) complexes 2, 5, and 6 showed $g_{\parallel}$ >g> $g_e$, indicating distorted octahedral structure and the presence of the unpaired electron in the $N^1,N^2$ orbital with significant covalent bond character. For the dimeric copper(II) complex $[H_2LCu_2Cl_2(H_2O)_4]{\cdot}3H_2O$ (6), the distance between the two copper centers was calculated using field zero splitting parameter for the parallel component that was estimated from the ESR spectrum. The antibacterial and antifungal activities of the compounds showed that, some of metal complexes exhibited a greater inhibitory effect than standard drug as tetracycline (bacteria) and Amphotricene B (fungi).

A Design Approach to $CrO_x/TiO_2$-based Catalysts for Gas-phase TCE Oxidation (기상 TCE 제거반응용 $CrO_x/TiO_2$계 복합 산화물 촉매 디자인)

  • Yang, Won-Ho;Kim, Moon-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-375
    • /
    • 2006
  • Single and complex metal oxide catalysts supported onto a commercial DT51D $TiO_2$ have been investigated for gas-phase TCE oxidation in a continuous flow type fixed-bed reaction system to develop a better design approach to catalysts for this reaction. Among the $TiO_2$-supported single metal oxides used, i.e., $CrO_x,\;FeO_x,\;MnO_x,\;LaO_x,\;CoO_x,\;NiO_x,\;CeO_x\;and\;CuO_x$, with the respective metal contents of 5 wt.%, the $CrO_x/TiO_2$ catalyst was shown to be most active for the oxidative TCE decomposition, depending significantly on amounts of $CrO_x\;on\;TiO_2$. The use of high $CrO_x$ loadings greater than 10 wt.% caused lower activity in the catalytic TCE oxidation, which is probably due to production of $Cr_2O_3$ crystallites on the surface of $TiO_2$. $CrO_x/TiO_2$-supported $CrO_x$-based bimetallic oxide catalysts were of particular interest in removal efficiency for this TCE oxidation reaction at reaction temperatures above $200^{\circ}C$, compared to that obtained with $CrO_x$-free complex metal oxides and a 10 wt.% $CrO_x/TiO_2$ catalyst. Catalytic activity of 5 wt.% $CrO_x-5$ wt.% $LaO_x$ in the removal reaction was similar to or slightly higher than that acquired for the $CrO_x$-only catalyst. Similar observation was revealed for 5 wt.% $CrO_x$-based bimetallic oxides consisting of either 5 wt.% $MnO_x,\;CoO_x,\;NiO_x\;or\;FeO_x$. These results represent that such $CrO_x$-based bimetallic systems for the catalytic TCE oxidation on significantly minimize the usage of $CrO_x$ that is well known to be one of very toxic heavy metals, and offer a very useful technique to design new type catalysts for reducing chlorinated volatile organic substances.