• Title/Summary/Keyword: Chromen

Search Result 29, Processing Time 0.027 seconds

Fluorescence-based Assay System for Endocannabinoid Degradation Enzyme, Fatty Acid Amide Hydrolase

  • Kim, Dae-Woong;Kim, Gun-Joong;Kim, Hae-Jo;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.279-285
    • /
    • 2010
  • Endogenous cannabinoids (endocannabinoids) display various pharmacological effects including pain control, anti-inflammation, and neuroprotection. The synthesis and release of endocannabinoids are regulated under both physiological and pathological conditions. The main degrading enzyme of endocannabinoid is fatty acid amide hydrolase (FAAH). Therefore we have developed the fluorescence-based assay system for FAAH. We established stable CosM6 cell lines expressing human FAAH. We also synthesized 2-oxo-2H-chromen-7-yl decanoate (DAEC) as a fluorogenic substrate for FAAH. When crude membrane extracts stably expressing FAAH was incubated with DAEC at $25^{\circ}C$, FAAH reacted specifically to DAEC and catalyzes the hydrolysis of DAEC into decanoic acid and highly fluorescent coumarin. Furthermore, the serin hydrolase inhibitor, phenylmethanesulfonylfluoride, inhibited the coumarin release to the reaction buffer in concentration dependent manner. This assay system is suitable for high-throughput screening since this system has simple experimental procedure and measurement method.

Baicalein Protects Human Skin Cells against Ultraviolet B-Induced Oxidative Stress

  • Oh, Min Chang;Piao, Mei Jing;Jayatissa Fernando, Pattage Madushan Dilhara;Han, Xia;Madduma Hewage, Susara Ruwan Kumara;Park, Jeong Eon;Ko, Mi Sung;Jung, Uhee;Kim, In Gyu;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.616-622
    • /
    • 2016
  • Baicalein (5,6,7-trihydroxy-2-phenyl-chromen-4-one) is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis. This study evaluated the protective effects of baicalein against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) radiation in a human keratinocyte cell line (HaCaT). Baicalein absorbed light within the wavelength range of UVB. In addition, baicalein decreased the level of intracellular reactive oxygen species (ROS) in response to UVB radiation. Baicalein protected cells against UVB radiation-induced DNA breaks, 8-isoprostane generation and protein modification in HaCaT cells. Furthermore, baicalein suppressed the apoptotic cell death by UVB radiation. These findings suggest that baicalein protected HaCaT cells against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging ROS.

Assay System for N-acylethanolamines Degradation Enzyme, N-acylethanolamine-hydrolyzing Acid Amidase

  • Kim, Dae-Woong;Kim, Gun-Joong;Kim, Hae-Jo;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.438-444
    • /
    • 2012
  • N-acylethanolamines (NAEs) including endocannabinoids, anadamide, are long chain fatty acid ethanolamines and express ubiquitously in animal and plant tissues. NAEs have several pharmacological effects including anti-inflammatory, analgesic and anorexic effects. The levels of NAEs in tissues are strictly regulated by synthesizing and hydrolyzing enzymes because NAEs are not stored in the cell but rather made on demand. NAEs are hydrolyzed to free fatty acids and ethanolamines by fatty acid amide hydrolase and N-acylethanolamine-hydrolyzing acid amidase (NAAA). Here, we suggest the fluorescence-based assay system for NAAA. We developed N-(4-methy-2-oxo-2H-chromen-7-yl)palmitamide (PAAC) as a fluorogenic substrate for NAAA and we also generated NAAA stably expressing COSM6 cell line. When extracts of cells expressing NAAA were incubated with PAAC, NAAA specifically hydrolyzed PAAC to palmitic acids and fluorogenic dye, coumarin. Release of coumarin was monitored by using fluorometer. NAAA hydrolyzed PAAC with an apparent Km of $20.05{\mu}M$ and Vmax of 32.18 pmol/mg protein/min. This assay system can be used to develop inhibitors or activators of NAAA.

Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Lithospermic Acid B in Rat Serum

  • Kim, Hui-Hyun;Ji, Hye-Young;Lee, Hye-Won;Kim, Youn-Chul;Sohn, Dong-Hwan;Lee , Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1202-1206
    • /
    • 2004
  • A rapid, sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/ MS) method for the determination of lithospermic acid B (LSB) in rat serum was developed. LSB and internal standard, 7-hydroxy-3-phenyl-chromen-4-one (HPC) were extracted from rat serum with methyl-tert-butyl ether at acidic pH and analyzed on a Luna $C_8$ column with the mobile phase of acetonitrile-ammonium formate (10 mM, pH 6.5) (50:50, v/v). The analytes were detected using a negative electrospray ionization tandem mass spectrometry in the multiple- reaction-monitoring mode. The standard curve was linear $(r^2 = 0.997)$ over the concentration range of 10.0-500 ng/mL. The coefficient of variation and relative error for intra- and interassay at three QC levels were 1.1~6.2% and -10.3~-2.7%, respectively. The recovery of LSB from serum sample ranged from 73.2 to 79.5%, with that of HPC (internal standard) being 75.1 %. The lower limit of quantification for LSB was 10 ng/mL using 50 ${\mu}L$ of serum sample.

Isolation and Structural Determination of Free Radical Scavenging Compounds from Korean Fermented Red Pepper Paste (Kochujang)

  • Chung, Jin-Ho;Shin, Heung-Chule;Cho, Jeong-Yong;Kang, Seong-Koo;Lee, Hyoung-Jae;Shin, Soo-Cheol;Park, Keun-Hyung;Moon, Jae-Hak
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.463-470
    • /
    • 2009
  • Sixteen antioxidative active compounds isolated from the EtOAc layer of MeOH extracts of kochujang, Korean fermented red pepper paste, were structurally elucidated as fumaric acid, methyl succinate, succinic acid furan-2-yl ester methyl ester (gochujangate, a novel compound), 2-hydroxy-3-phenylpropanoic acid, 3,4-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 6,7-dihydroxy-2H-chromen-2-one (esculetin), caffeic acid, cis-p-coumaric acid, trans-p-coumaric acid, daidzin, genistin, apigenin 7-O-$\beta$-D-apiofuranosyl($1{\rightarrow}2$)-$\beta$-D-glucopyranoside, apigenin 7-O-$\beta$-Dglucopyranoside, and quercetin 3-O-$\alpha$-L-rhamnopyranoside by mass spectrometry (MS) and nuclear magnetic resonance (NMR) experiments. These compounds were analyzed for the first time as antioxidants from kochujang.

Potential of Hanjeli (Coix lacryma-jobi) essential oil in preventing SARS-CoV-2 infection via blocking the Angiotensin Converting Enzyme 2 (ACE2) receptor

  • Diningrat, Diky Setya;Sari, Ayu Nirmala;Harahap, Novita Sari;Kusdianti, Kusdianti
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.289-303
    • /
    • 2021
  • Covid-19 is an ongoing pandemic as we speak in 2022. This infectious disease is caused by the SARS-CoV-2 virus, which infects cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. Thus, strategies that inhibit the binding of SARS-CoV-2 to the ACE2 receptor can stop this contagion. Hanjeli (Coix lacryma-jobi) essential oil contains many bioactive compounds, including dodecanoic acid; tetradecanoic acid; 7-Amino-8-imino-2-(2-imino-2H-chromen-3-yl); and 1,5,7,10-tetraaza-phen-9-one. These compounds suppress viral replication and may prevent Covid-19. Accordingly, this study assessed whether, these four limonoid compounds can block the ACE2 receptor. To this end, their physicochemical properties were predicted using Lipinski's "rule of five" on the SwissADME website, and their toxicity was assessed using the online tools ProTox and pkCSM. Additionally, their interactions with the ACE2 receptor were predicted via molecular docking using Autodock Vina. All the four compounds satisfied the "rule of five" and tetradecanoic acid was predicted to have a higher affinity than the comparison compound remdesivir and the original ligand of ACE2. Molecular docking results suggested that the compounds from hanjeli essential oil interact with the active site of the ACE2 receptor similarly as the original ligand and remdesivir. In conclusion, hanjeli essential oil contains compounds predicted hinder the interaction of SARS-CoV-2 with the ACE2 receptor. Accordingly, our data may facilitate the development of a phytomedical strategy against SARS-CoV-2 infection.

Chemical Constituents of the Culture Broth of Panus rudis

  • Song, Ja-Gyeong;Ha, Lee Su;Ki, Dae-Won;Choi, Dae-Cheol;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.604-606
    • /
    • 2021
  • In our ongoing search for new secondary metabolites from fungal strains, one novel compound (1) and nine known compounds (2-10) were isolated from the EtOAc-soluble layer of the culture broth of Panus rudis. The culture broth of P. rudis was extracted in acetone and fractionated by solvent partition; column chromatography using silica gel, Sephadex LH-20, and Sephadex G-10; MPLC; and HPLC. The structures of isolated compounds were elucidated by one- and two-dimensional NMR and LC-ESI-mass measurements. One new compound, panepoxydiol (1), and nine known compounds, (E)-3-(3-hydroxy-3-methylbut-1-en-1-yl)-7-oxabicyclo[4.1.0]hept-3-ene-2,5-diol (2), isopanepoxydone (3), neopanepoxydone (4), panepoxydone (5), panepophenanthrin (6), 4-hydroxy-2,2-dimethyl-6-methoxychromane (7), 6-hydroxy-2,2-dimethyl-3-chromen (8), 2,2-dimethyl-6-methoxychroman-4-one (9), 3,4-dihydroxy-2,2-dimethyl-6-methoxychromane (10), were isolated from the culture broth of P. rudis. This is the first report of isolation of a new compound panepoxydiol (1) and nine other chemical constituents (2-5, 7-10) from the culture broth of P. rudis.

Phytochemical Constituents of Climacium dendroides (곧은 나무이끼(Climacium dendroides)의 식물 화학적 성분연구)

  • Nam, Jung-Hwan;Cho, In-Sook;Kim, Su-Jeong;Nam, Chun-Woo;Seo, Jong-Taek;Yoo, Dong-Lim;Kim, Won-Bae;Ryu, Seung-Yeol;Lee, Eung-Ho;Kim, Min-Young;Yoo, Young-Min;Park, Hee-Juhn;Jung, Hyun-Ju
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.136-141
    • /
    • 2008
  • The chromatographic separation of organic solvent extracts of liverwort led to the isolation of six compounds. 2-Chromenone (1), 3, 4-dihydroxy-cinnamic acid (2), 3, 3', 4', 5, 7-pentahydroxy-2-phenylchromen-4-one (3), kaemperol-3-O-${\beta}$-D-glucopyranoside (4), 3-[[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1, 4, 5-trihydroxycyclohexane carboxylic acid (5) and quercetin-3-O-rutinoside (6) were isolated from the methanolic extracts of the all part of Climacium dendroides. Their structure were established by chemical and spectroscopic methods. All compounds were isolated for the first time from this plant Climacium dendroides.

Anti-Inflammatory and Enzyme Inhibitory Activities of Polyphenols from Peanut (Arachis hypogaea L.) Hull

  • Mihyang Kim;Yeo Ul Cho;Narae Han;Jin Young Lee;Yu-Young Lee;Moon Seok Kang;Hyun-Joo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.312-312
    • /
    • 2022
  • Peanut hull as by-product has been discarded during peanut processing. However, peanut hull contains plenty of polyphenols that shows various physiological activities. The objectives of this study were to investigate anti-inflammatory and enzyme inhibitory activities of polyphenols from 'Sinpalkwang' peanut (Arachis hypogaea L.) hull. Compounds were isolated from methanol extracts of peanut hull by preparative-high performance liquid chromatography after identifying and quantifying polyphenols using Ultra performance liquid chromatography (UPLC) and UPLC-Quadrupole time-of-flight-mass spectrometry profiling. The structures of compounds were elucidated by one-dimensional [1H, 13C] nuclear magnetic resonance (NMR) and two-dimensional NMR (correlated spectroscopy, heteronuclear single quantum coherence and heteronuclear multiple bond correlation). Three compounds were identified as 5,7-dihydroxy-4H-chromen-4-one (peak 2), luteolin (peak 4) and eriodictyol (peak 5). Significant differences in inflammatory mediator such as nitric oxide (NO), interleukin-6 (IL-6) and interleukin-1β (IL-lβ) in lipopolysaccharide stimulated Raw 264.7 macrophages and in enzyme (xanthine oxidase [XO] and α-glucosidase [AG]) inhibitory activities were observed between three compounds (p < 0.05). Peak 5 treated Raw 264.7 macrophages showed lower content of NO (16.4 uM), IL-6 (7.0 ng/mL), and IL-1β (60.6 pg/mL) than peak 2 (NO: 28.3 uM, IL-6: 11.3 ng/mL, IL-1β: 66.9 pg/mL) and peak 4 (NO: 24.7 uM, IL-6: 9.3 ng/mL, IL-1β: 62.6 pg/mL). Peak 5 showed higher XO inhibitory activity (84.7%) and higher AG inhibitory activity (52.4%) than peak 2 (XO inhibitory activity: 45.4%, AG inhibitory activity: 21.6%) and peak 4 (XO inhibitory activity: 37.9%, AG inhibitory activity: 37.5%) at concentration of 0.5mg/mL. This study suggests that peanut hull could be a potential source of anti-inflammatory and physiological materials while creating new use of discarded peanut hull as by-products concomitantly.

  • PDF