• Title/Summary/Keyword: Chromatography simulation

Search Result 36, Processing Time 0.031 seconds

Prediction of Formic Acid Chromatogram in Gradient Elution Chromatography

  • Won, Hye-Jin;Kim, In-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • Optimal operation in chromatography is needed to save operation time and the solvent used in multiple chromatographic runs. To this end, many simulation studies of chromatography process have been performed. The relationship between the distribution coefficient and the ionic strength is important in gradient elution ion chromatography. Experimental runs and computer simulations were carried out under linear gradient elution condition in order to compare the experiments and the simulation. Experiments were performed with formic acid under isocratic conditions to determine the simulation equation parameters. Computer simulation was based on three equations which related distribution with ionic strength as follows; K=${\alpha}$I(sup)-${\beta}$, K=A+BI+Cl$^2$and K=y(sub)0+A$_1$$.$e(sup)(-I/m$_1$). The effects of gradient slope on the chromatograms are discussed, and good agreement between the experimental and the simulated results is shown.

  • PDF

Experimental and Simulation Study of Lysozyme Separation in Cation Exchange Chromatography (양이온교환 크로마토그래피에서 Lysozyme 분리 실험과 전산모사)

  • Kim, Jung-Ae;Seong, Yeon-Kyeong;Kim, In-Ho
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.220-223
    • /
    • 2006
  • Lysozyme is an important antibacterial material, as effective food preservative. A number of lysozymes are found in nature such as egg white, where exists about 3.5% of egg proteins. In this study, carboxymethyl cation exchange chromatography has been used for separation of lysozyme. A simulation study by ASPEN was also performed for saving time and cost in chromatography purification experiments. Important parameters in experimental chromatography were sample loading amount, NaCl concentration, and pH of eluent. Simulation results were successfully fitted with chromatograms from experiments with change of parameters mentioned above.

Batch Chromatography Simulation of Tröger base by Aspen Chromatography (Aspen Chromatography에 의한 Tröger base의 회분식 크로마토그라피 전산모사)

  • Kim, Jung-Ae;Park, Moon-Bae;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.615-619
    • /
    • 2009
  • (+)-$Tr{\ddot{o}}ger$'s base in $Tr{\ddot{o}}ger$'s base racemates that inhibits thromboxane A2($T{\times}A2$) synthase has been used to treat arteriosclerosis. Separation of (+)-$Tr{\ddot{o}}ger$'s base by chromatography has become a major concern. However separation experiments of (+)-$Tr{\ddot{o}}ger$'s base need time and consumables so that simulation with Aspen Chromatography could save time and costs by predicting the efficiency of separation. Injection amount and eluent flow rate were varied to compare the resolutions and yields of TB(-) and TB(+). Highest resolution and yield were attained at the eluent rate of 0.25 mL/min. Isotherms representing the relationship between mobile phase concentration and stationary phase concentration were changed to get the best separation with Ideal Adsorbed Solution(IAS) Statistical Lanmuir isotherms.

Simulation of IgY(Immunoglobulin Yolk) Purification by SMB(Simulated Moving Bed) (SMB(Simulated Moving Bed)를 이용한 IgY(Immunoglobulin Yolk) 분리의 전산모사)

  • Song, Sung-Moon;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.798-803
    • /
    • 2011
  • IgY(Immunoglobulin Yolk) is a specific antibody in egg yolk, and it protects human body from virus and antigen. There are a lot of egg yolk components such as lipoprotein and protein. To separate IgY, HPLC(High Performance Liquid Chromatography) and precipitation were used in a batch mode and SMB(Simulated Moving Bed) was adopted for continuous purification of yolk proteins. IgY and other proteins in yolk were separated by using three-zone SMB chromatography. Before performing SMB experiments, batch chromatography and PIM(pulse input method) were performed to find operation parameters and adsorption isotherms. The results of batch chromatography were compared with simulated results using Aspen chromatography. To find the most suitable separation condition in SMB chromatography, simulations in $m_2$-$m_3$ plane on the triangle theory were carried out. $m_2$ = 0.18, $m_3$ = 1.0 and ${\Delta}$t = 419 s are the best conditions for the highest purity of IgY. With this operating parameters(flow rate in three zone and switching time), the purity of raffinate results in 98.39% from Aspen chromatography simulation. Most of the simulation reached steadystate within second recycle.

Simulation of Preparation Protein Chromatography (제조용 단백질 크로마토그래피의 시뮬레이션)

  • 김인호;이선묵;황우성
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.371-376
    • /
    • 1999
  • Simulation of preparative protein chromatography becomes necessary for separation as well as optimal operation. A mathematical model describing the behavior of elution peaks in preparative protein chromatography for single and binary component separation was solved numerically using a PDEsolver Macsyma$^{\circledR}$(Macsyma Inc., Arlington, MA, U.S.A.). Band profiles were calculated with the equilibrium-dispersive model of chromatography. The effects of the sample volume, concentrations of solutes in the sample, flow velocity and column length on the band profile of the elution peaks are discussed. The results in this paper suggest the model simulation for the binary mixture can be extended to multicomponent separations.

  • PDF

Separation Study of Cytosine and Guanine by HPLC and Aspen Chromatography (Aspen Chromatography 전산모사와 HPLC를 이용한 구아닌 시토신의 분리특성연구)

  • Park, Moon Bae;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.88-92
    • /
    • 2010
  • DNA structure studies attract many interests in pharmaceutical, biochemical and medical disciplines. Among them, base pairs play a vital role in biological information transfer. Therefore, they need to be analyzed in various ways and the pair of guaninine and cytosine is the present analytical object. Separation of guanine and cytosine was researched by Aspen chromatography simulator and HPLC(High Performance Liquid Chromatography) experiments. Aspen chromatography simulation resulted in various chromatograms with changes of sample concentration, eluent flow rate and number of plate. The resolutions and yields of guanine and cytosine were calculated to obtain a best separation condition. $C_{18}$ HPLC column and water/methanol/acetic acid mixture(90/10/0.2) were used for separation of guanine and cytosine. HPLC parameters(resolution and number of theoretical plate) were calculated under different flow rates and sample concentrations. Aspen chromatography simulation and HPLC experimental results were compared with fair agreement.

Simulation of SMB [Simulated Moving Bed] Chromatography for Separation of L-ribose and L-arabinose by ASPEN chromatography (L-ribose와 L-arabinose 분리를 위한 Aspen chromatography를 이용한 SMB [Simulated moving bed] 전산모사)

  • Lee, Seon-Hee;Lee, Eun;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.135-141
    • /
    • 2008
  • SMB (simulated moving bed) chromatography is a very useful utility for the separation of binary system. We simulated the separation of L-arabinose and L-ribose from the mixture by using lab-scale 4(1-1-1-1)-zone SMB chromatography. Preliminary experiments of PIM (pulse input method) were performed to measure adsorption isotherms of L-ribose and L-arabinose in $NH_2$ HPLC column, and experimental and simulated results from ASPEN chromatography were compared. To find the most suitable separation condition in SMB, we carried out a simulation in $m_2-m_3$ plane base on the triangle theory and calculated operating parameters (flow rate of four zone, switching time and feed concentration and so on) using ASPEN chromatography under the conditions of linear isotherms obtained from PIM.

Simulated Moving Bed(SMB) Chromatography Simulation for Loxoprofen Racemates Separation (록소프로펜 라세미체 분리를 위한 유사이동층 크로마토그래피의 전산모사)

  • Kim, In Ho;Song, Sung Moon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.623-627
    • /
    • 2011
  • Simulated moving bed(SMB) chromatography was simulated for separating loxoprofen racemates. Aspen chromatography simulator was utilized with Henry's constants of loxoprofen racemates which were obtained by batch chromatography experiments. Raffinate stream concentrations as well as purities were calculated with various $m_2$ and $m_3$ values in the triangle diagram obtained from two Henry's constants 7.9 and 10.1. Purity values are high under the conditions that the $m_2-m^3$ coordinates are near the left central region in the diagram and feed flow rates are lower. Concentration profiles of raffinate and extract streams along SMB columns explain the purity change in the case of increasing the column numbers installed at SMB.