• Title/Summary/Keyword: Chromatin Remodeling

Search Result 52, Processing Time 0.016 seconds

HISTOLOGICAL TISSUE RESPONSES OF DEMINERALIZED ALLOGENEIC BONE BLOCK GRAFT IN RABBITS (가토 탈회 동종골편 이식시 조직반응에 관한 연구)

  • Jun, Young-Hwan;Kim, Young-Jo;Min, Seung-Ki;Um, In-Woong;Lee, Dong-Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.1
    • /
    • pp.63-79
    • /
    • 1993
  • To repair bony defects with tansplanted bone in the body, fresh autogenous bone is undoubtly, the most effective bone graft for clinical applications. But the demineralized bone has the matrix-induced bone formation which was suggested by Urist in 1965. Many authors assisted that demineralized bone powder induces phenotypic conversion of mesenchymal cells into osteoblasts, with high-density bone formation. The process of inducing differentiated cells becomes osteogenic properties. The purpose of this study was to evaluate the osteoinductive capacity of allogenic freeze-dried demineralized bone block (FDD, $7{\times}7mm$) and to compare FDD with the same sue of deep-frozen allogenic bone(DF), fresh autogenous bone (A) after implantation. The histological and ultrastructural features of tissue responses were examined after 1, 2, 4, 6, 8 weeks implantation of each experimental groups in the operative site of the New Zealand white rabbits. The results were as follows : 1. Inflammatory cell infiltration generally has appeared at 1 week, but reduced at 4 weeks in each group, but most severe in DF group. 2. Osteoblastic activity has increased for 4 weeks, but decreased at 6 weeks in each group and there was no significant difference among experimental groups. 3. New bone formation has begun at 1week, least activations in A groups, and showed the revesal line of bone formation among each group at 6 to 8 weeks. 4. Bone resorption has appeared at 1 week, but disappeared at 4 weeks in both A and DF groups, but more severe in DF than A groups. 5. In ultrastructural changs, the DF group have showed the most remarkable osteoclastic activities among experimental groups. 6. Osteoid or tangled collagen fibrils near the implanted sites were replaced by more mature, lamellated bony trabeculae during bone remodeling. There was little difference among each experimental groups. 7. During the convertion osteoblasts to osteocytes which embedded within the bone matrix, there was organ-less-poor cytoplasm, increased nuclear chromatin, abundant rough endothelial reticulum (RER) in each groups. From the above the findings, the DF group shored more bone resorption and foreign body reaction than FDD and A groups, and FDD group showed more new bone formation or osteoblastic activity than DF and A groups in early stage. There was no significant difference of cellular activities among the FDD DF, and A groups according to the time.

  • PDF

Structure and Metallothionein Expression during Rat Liver Regeneration Induced by Partial Hepatectomy (흰쥐 부분 간 절제 후 재생 중인 간 조직의 구조와 metallothionein 분포)

  • Mun, Seung-Hoon;Jeong, Jin-Joo;Lee, Yong-Moon;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.175-183
    • /
    • 2008
  • Liver regeneration is a result of highly coordinated proliferation of hepatocytes and non-parenchymal liver cells. At this process, induction of metallothionein (MT), which is low molecular and cysteine rich, has been reported. The present study was carried to find the ultrastructure of hepatocytes and determine the expression of MT in regenerating rat liver after partial hepatectomy. As a result, the remnant liver after PH grew fast from 1 day until 7 days. Various changes were morphologically observed. Disintegration of cell plates and liver lobule appeared shortly after PH. And hepatocytes showed the rapid proliferation, characterized by high nuclear cytoplasmic ratio, weak intercellular junctional complexes, chromatin condensation, increase of ribosomes and mitochondria, and temporary increase of lipid droplets. Finally, remodeling of the liver lobule was completed through the rearrangement of blood vessels and cell plates by 7 days after PH. On histochemistry, immunoreactivity indicating the presence of MT appeared moderately throughout the cytoplasm of control rat hepatocyte. After PH, positive reactions for MT increased at the cytoplasm and the nucleus. These results suggest that the remnant liver cells immediately entered cell proliferation and increase of MT expression after PH. It is thought that MT protein might be associated with transfer of some factors needed to cell division from the cytoplasm to the nucleus for regeneration of the liver after PH.