• Title/Summary/Keyword: Chord

Search Result 605, Processing Time 0.025 seconds

Hysteresis of concrete-filled circular tubular (CFCT) T-joints under axial load

  • Liu, Hongqing;Shao, Yongbo;Lu, Ning;Wang, Qingli
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.739-756
    • /
    • 2015
  • This paper presents investigations on the hysteretic behavior of concrete-filled circular tubular (CFCT) T-joints subjected to axial cyclic loading at brace end. In the experimental study, four specimens are fabricated and tested. The chord members of the tested specimens are filled with concrete along their full length and the braces are hollow section. Failure modes and load-displacement hysteretic curves of all the specimens obtained from experimental tests are given and discussed. Some indicators, in terms of stiffness deterioration, strength deterioration, ductility and energy dissipation, are analyzed to assess the seismic performance of CFCT joints. Test results indicate that the failures are primarily caused by crack cutting through the chord wall, convex deformation on the chord surface near brace/chord intersection and crushing of the core concrete. Hysteretic curves of all the specimens are plump, and no obvious pinching phenomenon is found. The energy dissipation result shows that the inelastic deformation is the main energy dissipation mechanism. It is also found from experimental results that the CFCT joints show clear and steady stiffness deterioration with the increase of displacement after yielding. However, all the specimens do not perform significant strength deterioration before failure. The effect of joint geometric parameters ${\beta}$ and ${\gamma}$ of the four specimens on hysteretic performance is also discussed.

A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

  • He, Shanshan;Ou, Daojiang;Yan, Changya;Lee, Chen-Han
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.218-232
    • /
    • 2015
  • Piecewise linear (G01-based) tool paths generated by CAM systems lack $G_1$ and $G_2$ continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA) is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA) to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1) an improved technique for initial control point determination over Dominant Point Method, (2) an algorithm that updates foot point parameters as needed, (3) analysis of the degrees of freedom of control points to insert new control points only when needed, (4) chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

Evaluation of Compressive Chord Plastification of Circular Hollow Section X-joint Truss Connection (원형강관 X-이음 트러스접합부의 압축 주강관소성화 평가)

  • Lee, Kyungkoo;Sin, Yong Sup;Son, Eun Ji
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.447-454
    • /
    • 2015
  • The researches on circular hollow section(CHS) connections have been conducted continuously because of development of material properties and complex local behavior of the connections. The purpose of this study is that the effects of material strength and chord wall slenderness on chord plastification and strength of CHS X-joint truss connection under compression on branch member were evaluated. To this end, finite element analyses were performed for various connections, using ANSYS Mechanical APDL program. Based on the analysis results, the design strength of the connections according to chord plastification limit state in KBC were examined. Finally, special considerations for CHS X-joint connection design were suggested.

Axially-loaded multiplanar tubular KTX-joints: numerical analysis

  • Zhang, Chenhui;Zou, Bo;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.173-190
    • /
    • 2022
  • With the development of spatial structures, the joints are becoming more and more complex to connect tubular members of spatial structures. In this study, an approach is proposed to establish high-efficiency finite element model of multiplanar KTX-joint with the weld geometries accurately simulated. Ultimate bearing capacity the KTX-joint is determined by the criterion of deformation limit and failure mechanism of chord wall buckling is studied. Size effect of fillet weld on the joint ultimate bearing capacity is preliminarily investigated. Based on the validated finite element model, a parametric study is performed to investigate the effects of geometric and loading parameters of KT-plane brace members on ultimate bearing capacity of the KTX-joint. The effect mechanism is revealed and several design suggestions are proposed. Several simple reinforcement methods are adopted to constrain the chord wall buckling. It is concluded that the finite element model established by proposed approach is capable of simulating static behaviors of multiplanar KTX-joint; chord wall buckling with large indentation is the typical failure mode of multiplanar KTX-joint, which also increases chord wall displacements in the axis directions of brace members in orthogonal plane; ultimate bearing capacity of the KTX-joint increases approximately linearly with the increase of fillet weld size within the allowed range; the effect mechanism of geometric and loading parameters are revealed by the assumption of restraint region and interaction between adjacent KT-plane brace members; relatively large diameter ratio, small overlapping ratio and small included angle are suggested for the KTX-joint to achieve larger ultimate bearing capacity; the adopted simple reinforcement methods can effectively constrain the chord wall buckling with the design of KTX-joint converted into design of uniplanar KT-joint.

Bending Properties of Parallel Chord Truss with Steel-Web Members

  • Hyung Woo LEE;Sang Sik JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • A truss is a structure in which the members are connected and arranged such that they are primarily subjected to axial loading. A truss has the advantage that it can be used for a longer span because the structure distributes the applied force to its members well, and the load is transmitted only in the axial direction of the members. Trusses manufactured using timber have more advantages than those made of other materials. In this study, the properties of parallel chord trusses composed of timber chord and steel-web members were evaluated. We constructed truss specimens with various lengths by using upper and lower chords of 2 × 4 inch spruce-pine-fir lumber and steel-web members manufactured by S and P companies. The specimens were tested in accordance with KS F 2150. The test results showed that the load at the deflection limit and the deflection limit itself increased from L/180 to L/360 regardless of the length of the specimens. For specimens of the same length, the load at the deflection limit increased as the height of the parallel timber chord truss specimens increased from 200 to 300 mm. Successive installations of the steel-web members (SST) showed almost 2 times the load at each deflection limit compared to that of SAT specimens (alternate installation of the steel-web members). When comparing the three load-deflection limits in terms of the manufacturer of the steel-web members, the load at each deflection limit for SST specimens was higher than that for PST specimens.

A Fundamental Study on Wind Turbine Model of the Wind Power Generation (풍력발전용 모형터빈에 관한 기초적연구)

  • Kim, J.H.;Nam, C.D.;Kim, Y.H.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1014-1019
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

A Basis Study on Optimum Design of Air Turbine for Wind Power Generation (풍력발전용 공기터빈의 최적설계에 관한 기초 연구)

  • 김정환;김범석;김윤해;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1091-1097
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected . A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental results. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is conclued that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

Finite element modeling of tubular truss bearings

  • Kozy, B.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.49-70
    • /
    • 2005
  • This paper reports on finite element analysis techniques that may be applied to the study of circular hollow structural sections and related bearing connection geometries. Specifically, a connection detail involving curved steel saddle bearings and a Structural Tee (ST) connected directly to a large-diameter Hollow Structural Section (HSS) truss chord, near its open end, is considered. The modeling is carried out using experimentally verified techniques. It is determined that the primary mechanism of failure involves a flexural collapse of the HSS chord through plastification of the chord wall into a well-defined yield line mechanism; a limit state for which a shell-based finite element model is well-suited to capture. It is also found that classical metal plasticity material models may be somewhat limited in their applicability to steels in fabricated tubular members.

Community Characteristics of Ground Beetles in Four Gotjawal Terrains of Jeju Island, Korea (제주도의 곶자왈에 분포하는 지표성 딱정벌레 군집의 특성)

  • Jeon, Hyung-Sik;Yang, Kyoung-Sik;Lee, Ga-Eun;Kim, Won-Taek
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.226-232
    • /
    • 2008
  • Sampling of the ground beetles in four 'gotjawal' terrains of Jeju island was conducted from April to October, 2007, using pit-fall trap. Totally 2,887 individuals of 23 species belonged to 4 families were collected. The species diversity index was the highest at Aeweol gotjawal (AW), while it was the lowest in Hangyeong-Andeog gotjawal (HA). Clustering analysis revealed that the insect communities of four gotzawals were grouped in only one cluster. Jocheon-Hamdeog gotjawal (JH) formed a cluster with Gujwa-Sungsan gotjawal (GS) at the lowest chord distance (0.24). At the higher chord distance of 0.50, AW fused the cluster of JH and GS. HA fused with the rest three terrains, forming a single cluster at the highest chord distance of 0.98.

A PIV STUDY ON A DELTA WING(LEX) MODEL FLOW IN MODERN AIRCRAFT

  • LEE Young-Ho;SOHN Myoung-Hwan;LEE Hyun;KIM Jeong-Hwan;KIM Beom-Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.53-61
    • /
    • 2001
  • Highly swept leading edge extensions(LEX) applied to delta wings have greatly improved the subsonic maneuverability of contemporary fighters. Fundamental approach by PIV method was adopted to study the basic flow of the vortex pair formation appearing on a delta wing model with or without LEX. Three angles of attacks$(16^{\circ},\;24^{\circ},\;28^{\circ})$ and four measuring section of chord length(LEX-on) and three section(LEX-off) were selected as experimental conditions. From the PIV analysis, maximum vorticity was found at a given chord length and maximum velocity was also detected at larger chord length where stronger vortex was generated. Furthermore, the effect of LEX was remarkable at the vortex pair distance indicating narrower distance at LEX-on case.

  • PDF