• Title/Summary/Keyword: Cholinesterase inhibitory activity

Search Result 29, Processing Time 0.031 seconds

Antioxidant and Cholinesterase Inhibitory Activities of Aqueous Extract from Rainbow Trout Oncorhynchus mykiss

  • Baek, Jae-Min;Yoon, Na-Young;Kim, Yeon-Kye;Lee, Doo-Seog;Yoon, Ho-Dong;Park, Jeung-Sook
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.89-92
    • /
    • 2011
  • We investigated the antioxidant and cholinesterase inhibitory activities of the aqueous extract of rainbow trout Oncorhynchus mykiss. The antioxidant activity of O. mykiss aqueous extract was determined by in vitro peroxynitrite scavenging activity and reducing power assays. The aqueous extract of O. mykiss showed potent peroxynitrite radical scavenging activity ($IC_{50}=0.12{\pm}0.001\;mg/mL$) and reducing power (absorbance=$0.47{\pm}0.001$) at the concentration of 1 mg/mL. The in vitro cholinesterase inhibitory activity of O. mykiss aqueous extract was examined using spectrophotometric analyses of acetyl- and butyrylcholinesterase. The aqueous extract of O. mykiss showed acetylcholinesterase inhibitory activity ($IC_{50}=1.61{\pm}0.13\;mg/mL$), but did not exhibit inhibitory activity against butyrylcholinesterase. These results suggest that O. mykiss possesses antioxidant and acetylcholinesterase inhibitory activities and provide scientific evidence for the health benefits of O. mykiss aqueous extract.

Antioxidant and Cholinesterase Inhibitory Activities of Antarctic Krill Eupausia superba

  • Yoon, Na-Young;Xie, Chengliang;Shim, Kil-Bo;Kim, Yeon-Kye;Lee, Doo-Seog;Yoon, Ho-Dong
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.289-293
    • /
    • 2011
  • The antioxidant and cholinesterase inhibitory activities of methanol, pretanol, and acetone extracts of Eupausia superba were investigated and their bioactivities compared. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis[3-ethylbenzthiazoline-6-sulfonic acid] ($ABTS^+$) radical-scavenging activities and reducing power assays were used to determine antioxidant activities, and Ellman's colorimetric methods were applied to evaluate cholinesterase inhibitory activity. Although all extracts were positive, Acetone extract of E. superba showed the highest activities. However, these showed moderate or no inhibitory activity against butyrylcholinesterase. Moreover, the total carotenoid contents of the organic solvent extracts followed the same order as their antioxidant and acetylcholinesterase inhibitory activities. These results suggest that E. superba is a potential source of natural antioxidants and cholinesterase inhibitors.

Antioxidant and Cholinesterase Inhibitory Activities of the By-products of Three Pandalid Shrimps

  • Kim, Sang-Bo;Yoon, Na Young;Shi, Kil Bo;Lim, Chi-Won
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.421-425
    • /
    • 2014
  • The antioxidant and cholinesterase inhibitory activities of the acetone and dichloromethane ($CH_2Cl_2$) extracts of the by-products (heads, shells, and tails) of Pandalus borealis, Pandalus hypsinotus, and Pandalopsis japonica belonging to the family Pandalidae were investigated and their bioactivities were compared. The antioxidant and cholinesterase inhibitory activities of the organic solvent extracts of three shrimp by-products were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis[3-ethylbenzothiazoline-6-sulfonic acid] ($ABTS^+$) radical scavenging activities, reducing power and xanthine oxidase (XO) inhibitory activity assays and Ellman's colorimetric method. The extracts of P. hypsinotus exhibited the highest antioxidant and cholinesterase inhibitory activities. The acetone extracts showed more potent activities toward antioxidant and cholinesterase inhibition compared with the $CH_2Cl_2$ extracts. Furthermore, the total carotenoid contents of the acetone extracts were higher than those of the $CH_2Cl_2$ extracts. Thus, the carotenoid contents may affect antioxidant and cholinesterase inhibition. Our results suggest that the shrimp by-products could act as a nutraceutical agent to prevent oxidative stress and Alzheimer's disease.

Evaluation of Antioxidant, Anti-cholinesterase, and Anti-inflammatory Effects of Culinary Mushroom Pleurotus pulmonarius

  • Nguyen, Trung Kien;Im, Kyung Hoan;Choi, Jaehyuk;Shin, Pyung Gyun;Lee, Tae Soo
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.291-301
    • /
    • 2016
  • Culinary mushroom Pleurotus pulmonarius has been popular in Asian countries. In this study, the anti-oxidant, cholinesterase, and inflammation inhibitory activities of methanol extract (ME) of fruiting bodies of P. pulmonarius were evaluted. The 1,1-diphenyl-2-picryl-hydrazy free radical scavenging activity of ME at 2.0 mg/mL was comparable to that of butylated hydroxytoluene, the standard reference. The ME exhibited significantly higher hydroxyl radical scavenging activity than butylated hydroxytoluene. ME showed slightly lower but moderate inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase than galantamine, a standard AChE inhibitor. It also exhibited protective effect against cytotoxicity to PC-12 cells induced by glutamate ($10{\sim}100{\mu}g/mL$), inhibitory effect on nitric oxide (NO) production and inducible nitric oxide synthase protein expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, and carrageenan-induced paw edema in a rat model. High-performance liquid chromatography analysis revealed the ME of P. pulmonarius contained at least 10 phenolic compounds and some of them were identified by the comparison with known standard phenolics. Taken together, our results demonstrate that fruiting bodies of P. pulmonarius possess antioxidant, anti-cholinesterase, and inflammation inhibitory activities.

Cholinesterase Inhibitory Activities of Alkaloids from Corydalis Tuber

  • Hung, Tran Manh;Thuong, Phuong Thien;Nhan, Nguyen Trung;Mai, Nguyen Thi Thanh;Quan, Tran Le;Choi, Jae-Sue;Woo, Mi-Hee;Min, Byung-Sun;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.108-112
    • /
    • 2011
  • Several isoquinoline alkaloids (1 - 18), which have basic chemical structures as protoberberine and aporphine skeletones, were evaluated for their inhibitory activities on AChE and BuChE. Among them, compounds 3, 4, 6, 8 and 12 showed the potent AchE activity with the $IC_{50}$ values ranging from $10.2{\pm}0.5\;{\mu}M$ to $24.5{\pm}1.6\;{\mu}M$, meanwhile, compound 14 - 17 exhibited strong inhibitory activity with $IC_{50}$ values from $2.1{\pm}0.2$ to $5.5{\pm}0.3\;{\mu}M$. Compounds 14 - 17 exhibited selective inhibition for AChE compared with BuChE. The isoquinoline alkaloid possesses aromatic methylenedioxy groups and quaternary nitrogen atoms are crucial for the anti-cholinesterase inhibitory activity.

Development of Cholinesterase Inhibitors Using (a)-Lipoic Acid-benzyl Piperazine Hybrid Molecules

  • Kim, Beom-Cheol;Lee, Seung-Hwan;Jang, Mi;Shon, Min Young;Park, Jeong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3322-3326
    • /
    • 2013
  • A series of hybrid molecules between (${\alpha}$)-lipoic acid (ALA) and benzyl piperazines were synthesized and their in vitro cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibitory activities were evaluated. Even though the parent compounds did not show any inhibitory activity against cholinesterase (ChE), all hybrid molecules showed BuChE inhibitory activity. Some hybrid compounds also displayed AChE inhibitory activity. Specifically, ALA-1-(3-methylbenzyl)piperazine (15) was shown to be an effective inhibitor of both BuChE ($IC_{50}=2.3{\pm}0.7{\mu}M$) and AChE ($IC_{50}=30.31{\pm}0.64{\mu}M$). An inhibition kinetic study using compound 15 indicated a mixed inhibition type. Its binding affinity ($K_i$) value to BuChE is $2.91{\pm}0.15{\mu}M$.

Antioxidants and Acetyl-cholinesterase Inhibitory Activity of Solvent Fractions Extracts from Dendropanax morbiferus (황칠나무의 용매 분획별 추출물의 항산화 활성 및 Acetyl-cholinesterase 저해 활성비교)

  • Yu, Ji Min;Moon, Hyung In
    • Korean Journal of Plant Resources
    • /
    • v.31 no.1
    • /
    • pp.10-15
    • /
    • 2018
  • The leaves and stems of Dendropanax morbiferus were separated from organic solvents with methanol. The organic solvent fractions were fractionated with dichloromethane, ethyl acetate and butanol according to the systematic fractionation method. Oxidation in the body induces aging, and antioxidant activity has attracted the attention of many people as a preventive component to suppress negative reactions in the body. To investigate the antioxidant activity of Dendropanax morbiferus were subjected to DPPH free radical assay. In addition, acetyl cholinesterase inhibitions were performed for Alzheimer's disease as an aging neurological disease. As a result, it was confirmed that the antioxidant effect of DPPH was generally good in the antioxidant test. The ethyl acetate fractions of Dendropanax morbiferus stems and leaves were $IC_{50}=30{\mu}g/m{\ell}$. Acetyl cholinesterase inhibition experiments were carried out at a concentration of $250{\mu}g/m{\ell}$. Dendropanax morbiferus stems fractions showed dichloromethane fraction of 57.68%, which significantly inhibited the activity of acetyl cholinesterase.

Chemical Constituents from Solenostemma argel and their Cholinesterase Inhibitory Activity

  • Demmak, Rym Gouta;Bordage, Simon;Bensegueni, Abederrahmane;Boutaghane, Naima;Hennebelle, Thierry;Mokrani, El Hassen;Sahpaz, Sevser
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.115-121
    • /
    • 2019
  • Alzheimer's disease is a chronic neurodegenerative disorder with no curative treatment. The commercially available drugs, which target acetylcholinesterase, are not satisfactory. The aim of this study was to investigate the cholinesterase inhibitory activity of Solenostemma argel aerial part. Eight compounds were isolated and identified by NMR: kaempferol-3-O-glucopyranoside (1), kaempferol (2), kaempferol-3-glucopyranosyl($1{\rightarrow}6$)rhamnopyranose (3) p-hydroxybenzoic acid (4), dehydrovomifoliol (5), 14,15-dihydroxypregn-4-ene-3,20-dione (6), 14,15-dihydroxy-pregn-4-ene-3,20-dione-$15{\beta}$-D-glucopyranoside (7) and solargin I (8). Two of them (compounds 2 and 3) could inhibit over 50 % of butyrylcholinesterase activity at $100{\mu}M$. Compound (2) displayed the highest inhibitory effect against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with a slight selectivity towards the latter. Molecular docking studies supported the in vitro results and revealed that (2) had made several hydrogen and ${\pi}-{\pi}$ stacking interactions which could explain the compound potency to inhibit AChE and BChE.

Development of Cholinesterase Inhibitors using 1-Benzyl Piperidin-4-yl (α)-Lipoic Amide Molecules

  • Lee, Seung-Hwan;Kim, Beom-Cheol;Kim, Jae-Kwan;Lee, Hye Sook;Shon, Min Young;Park, Jeong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1681-1686
    • /
    • 2014
  • A series of hybrid molecules between (${\alpha}$)-lipoic acid (ALA) and 4-amino-1-benzyl piperidines were synthesized and their in vitro cholinesterase (acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)) inhibitory activities were evaluated. Even though the parent compounds did not exhibit any inhibitory activity against cholinesterase (ChE) with the exception of compound 14 ($IC_{50}=255.26{\pm}4.41$ against BuChE), all hybrid molecules demonstrated BuChE inhibitory activity. Some hybrid compounds also displayed AChE inhibitory activity. Specifically, compound 17 was shown to be an effective inhibitor against both AChE ($IC_{50}=1.75{\pm}0.30{\mu}M$) and BuChE ($IC_{50}=5.61{\pm}1.25{\mu}M$) comparable to galantamine ($IC_{50}=1.7{\pm}0.9{\mu}M$ against AChE and $IC_{50}=9.4{\pm}2.5{\mu}M$ against BuChE). Inhibition kinetic studies using compound 17 indicated a mixed inhibition type for AChE and a noncompetitive inhibition type for BuChE. Its binding affinity ($K_i$) values to AChE and BuChE were $3.8{\pm}0.005{\mu}M$ and $7.0{\pm}0.04{\mu}M$, respectively.

An In Vitro and In Vivo Cholinesterase Inhibitory Activity of Pistacia khinjuk and Allium sativum Essential Oils

  • Ghajarbeygi, Peyman;Hajhoseini, Ashraf;Hosseini, Motahare-Sadat;Sharifan, Anoosheh
    • Journal of Pharmacopuncture
    • /
    • v.22 no.4
    • /
    • pp.231-238
    • /
    • 2019
  • Objectives: Alzheimer's disease (AD), an overwhelming neurodegenerative disease, has deleterious effects on the brain that consequently causes memory loss and language impairment. This study was intended to investigate the neuroprotective activity of the two essential oils (EOs) from Iranian Pistacia khinjuk (PK) leaves and Allium sativum (AS) cloves against β-Amyloid 25-35 (Aβ25-35) induced elevation of cholinesterase enzymes in AD. Methods: The EOs of PK (PKEO) and AS (ASEO) were prepared and analyzed in terms of extraction yield, phenolic content, and cholinergic markers in vitro. Moreover, both were administered orally to adult male Wistar rats at concentrations of 1, 2, and 3%. The inhibitory potential of PKEO and ASEO was compared with Donepezil (0.75 mg/kg) against the high activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Results: PKEO reached an inhibition rate of 83.6% and 81.4% against AChE and BChE, respectively. ASEO had lower anti-cholinesterase activity (65.4% and 31.5% for the inhibition AChE and BChE). PKEO was found to have more phenolic content than ASEO. A significantly positive correlation was observed between the total phenolics and anti-cholinesterase potential. In rats, both EOs decreased the enzyme activity in a concentration-dependent manner. As compared with Donepezil, the significant difference in the AChE and BChE inhibition occurred as rats were treated with PKEO 3% (p < 0.05). Conclusion: It could be concluded that PKEO and ASEO are potent inhibitors of AChE and BChE in rats that hold promise to be used for the treatment of AD.