• Title/Summary/Keyword: Cholinergic receptor

Search Result 108, Processing Time 0.023 seconds

P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle

  • Cho, Young-Rae;Jang, Hyeon-Soon;Kim, Won;Park, Sun-Young;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.311-316
    • /
    • 2010
  • It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 ($10^{-7}{\sim}10^{-4}M$), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue ($10^{-6}{\sim}10^{-4}M$), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist ${\alpha}$,${\beta}$-methylene 5'-adenosine triphosphate (${\alpha}{\beta}MeATP$, $10^{-7}{\sim}10^{-5}M$) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[${\beta}$-thio]diphosphate trilithium salt ($ADP{\beta}S$, $10^{-7}{\sim}10^{-5}M$) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,$N$-diethyl-D-${\beta}$,${\gamma}$- dibromomethylene 5'-triphosphate triammonium (ARL 67156, $10^{-4}M$) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

Loss of Hfe Function Reverses Impaired Recognition Memory Caused by Olfactory Manganese Exposure in Mice

  • Ye, Qi;Kim, Jonghan
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout ($Hfe^{-/-}$) and wild-type ($Hfe^{+/+}$) mice were intranasally-instilled with manganese chloride ($MnCl_2$ 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in $Hfe^{+/+}$ mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, $Hfe^{-/-}$ mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in $Hfe^{+/+}$ mice, but not in $Hfe^{-/-}$ mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of anti-oxidant enzymes in the PFC.

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.32-42
    • /
    • 2009
  • The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.

The efficacy of combination treatment of gabapentin and electro-acupuncture on paclitaxel-induced neuropathic pain

  • Kim, Min Joon;Lee, Ji Hwan;Jang, Jo Ung;Quan, Fu Shi;Kim, Sun Kwang;Kim, Woojin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.657-666
    • /
    • 2017
  • Paclitaxel, a chemotherapeutic drug, induces severe peripheral neuropathy. Gabapentin (GBT) is a first line agent used to treat neuropathic pain, and its effect is mediated by spinal noradrenergic and muscarinic cholinergic receptors. Electro-acupuncture (EA) is used for treating various types of pain via its action through spinal opioidergic and noradrenergic receptors. Here, we investigated whether combined treatment of these two agents could exert a synergistic effect on paclitaxel-induced cold and mechanical allodynia, which were assessed by the acetone drop test and von Frey filament assay, respectively. Significant signs of allodynia were observed after four paclitaxel injections (a cumulative dose of 8 mg/kg, i.p.). GBT (3, 30, and 100 mg/kg, i.p.) or EA (ST36, Zusanli) alone produced dose-dependent anti-allodynic effects. The medium and highest doses of GBT (30 and 100 mg/kg) provided a strong analgesic effect, but they induced motor dysfunction in Rota-rod tests. On the contrary, the lowest dose of GBT (3 mg/kg) did not induce motor weakness, but it provided a brief analgesic effect. The combination of the lowest dose of GBT and EA resulted in a greater and longer effect, without inducing motor dysfunction. This effect on mechanical allodynia was blocked by spinal opioidergic (naloxone, $20{\mu}g$), or noradrenergic (idazoxan, $10{\mu}g$) receptor antagonist, whereas on cold allodynia, only opioidergic receptor antagonist blocked the effect. In conclusion, the combination of the lowest dose of GBT and EA has a robust and enduring analgesic action against paclitaxel-induced neuropathic pain, and it should be considered as an alternative treatment method.

Gintonin facilitates catecholamine secretion from the perfused adrenal medulla

  • Na, Seung-Yeol;Kim, Ki-Hwan;Choi, Mi-Sung;Ha, Kang-Su;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.629-639
    • /
    • 2016
  • The present study was designed to investigate the characteristics of gintonin, one of components isolated from Korean Ginseng on secretion of catecholamines (CA) from the isolated perfused model of rat adrenal gland and to clarify its mechanism of action. Gintonin (1 to $30{\mu}g/ml$), perfused into an adrenal vein, markedly increased the CA secretion from the perfused rat adrenal medulla in a dose-dependent fashion. The gintonin-evoked CA secretion was greatly inhibited in the presence of chlorisondamine ($1{\mu}M$, an autonomic ganglionic bloker), pirenzepine ($2{\mu}M$, a muscarinic $M_1$ receptor antagonist), Ki14625 ($10{\mu}M$, an $LPA_{1/3}$ receptor antagonist), amiloride (1 mM, an inhibitor of $Na^+/Ca^{2+}$ exchanger), a nicardipine ($1{\mu}M$, a voltage-dependent $Ca^{2+}$ channel blocker), TMB-8 ($1{\mu}M$, an intracellular $Ca^{2+}$ antagonist), and perfusion of $Ca^{2+}$-free Krebs solution with 5mM EGTA (a $Ca^{2+}$chelater), while was not affected by sodium nitroprusside ($100{\mu}M$, a nitrosovasodialtor). Interestingly, LPA ($0.3{\sim}3{\mu}M$, an LPA receptor agonist) also dose-dependently enhanced the CA secretion from the adrenal medulla, but this facilitatory effect of LPA was greatly inhibited in the presence of Ki 14625 ($10{\mu}M$). Moreover, acetylcholine (AC)-evoked CA secretion was greatly potentiated during the perfusion of gintonin ($3{\mu}g/ml$). Taken together, these results demonstrate the first evidence that gintonin increases the CA secretion from the perfused rat adrenal medulla in a dose-dependent fashion. This facilitatory effect of gintonin seems to be associated with activation of LPA- and cholinergic-receptors, which are relevant to the cytoplasmic $Ca^{2+}$ increase by stimulation of the $Ca^{2+}$ influx as well as by the inhibition of $Ca^{2+}$ uptake into the cytoplasmic $Ca^{2+}$ stores, without the increased nitric oxide (NO). Based on these results, it is thought that gintonin, one of ginseng components, can elevate the CA secretion from adrenal medulla by regulating the $Ca^{2+}$ mobilization for exocytosis, suggesting facilitation of cardiovascular system. Also, these findings show that gintonin might be at least one of ginseng-induced hypertensive components.

Influence of Fimasartan (a Novel $AT_1$ Receptor Blocker) on Catecholamine Release in the Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Hyo-Jeong;Lee, Seog-Ki;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2013
  • The aim of this study was to determine whether fimasartan, a newly developed $AT_1$ receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 ${\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), and veratridine (100 ${\mu}M$, an activator of $Na^+$ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 ${\mu}M$) and L-NAME (30 ${\mu}M$, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high $K^+$, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 ${\mu}M$) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 ${\mu}M$). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is relevant to $AT_1$ receptor blockade without NO release.

Behavioral Sensitization and M1 Muscarinic Acetylcholine Receptor mRNA Expression in Methamphetamine-Administered Mice

  • Kim, Kyung-In;Cho, Jae-Han;Park, Hyun-Jung;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2004
  • Repeated administration of psychostimulants such as amphetamines increases locomotor activity in rodents. These drugs, including methamphetamine, enhance dopaminergic neurotransmission and result in hyper-locomotion and behavioral sensitization. It is well known that the existence of a complex balance between the cholinergic and dopaminergic systems in the central nervous system. Thus, behavioral sensitization by methamphetamine may be related to the expression of the M1 muscarinic acetylcholine receptors gene. The present study investigated the changes of M1R mRNA in hyperlocomotor activity and behavioral sensitization by methamphetamine (2 mg/kg) in mice. Our results showed that M1R mRNA expression was increased in the frontal cortex and the hippocampus region (the CA2 region) in the acute methamphetamine administered group compared to the saline administered group. In the chronic group, M1R mRNA expression was increased in the frontal cortex ill1d the hippocampus regions (CA2 and DG regions) in melt1amphetamine administered group compared to saline control group. These results indicate that acute or chronic treatment of mathamphetamine leads to the region-specific changes in mRNA expression levels of M1R. Therefore, Therefore, the present result suggests that M1R may play a role in modulating of methamphetamine-induced behavioral sensitization in mice.

Effects of Cardiovascularly Acting Neuroendocrine Agents on Heart Beatings of Pacific Oyster, Crassostrea gigas (순환기 기능 조절기능을 가진 신경내분비계 작용물질이 참굴의 심장 수축기능에 미치는 영향)

  • Park, Kwan-Ha
    • The Korean Journal of Malacology
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Because it is known that bivalve hearts contain various modulatory systems activated by neuroendocrine substances, it was examined whether different classes of endogenous and synthetic drugs of neuroendocrinological importance can influence cardiac functions of the Pacific oyster Crassostrea gigas. Cholinergically active agents acetylcholine and carbachol increased heart rates while diminishing cardiac contractility. Adrenergically active substances norepinephrine (NE) and epinephrine (Epi) also induced heart rate increase and contractility decrease. An $\alpha_1$-adrenergic receptor-selective agonist phenyephrine (PE) failed to modulate either parameter. The Epi-induced heart rate increase and contractile depression were both blocked significantly by non-selective $\beta_1/\beta_2$-adrenergic antagonist propranolol. A $\beta_1$-selective antagonist atenolol prevented Epi-induced heart rate decrease but not the contractile depression, suggesting possible $\beta_2$ receptors for Epi-induced contractile depression. The three autacoids examined exerted discrete responses: histamine increased heart rate and depressed contraction; $\gamma$-amino-butyric acid increased both parameters; serotonin failed to change either parameter. The 5 piscine anesthetic agents examined, MS-222, benzocaine, quinaldine, urethane, pantocaine and pentobarbital, all failed to influence the cardiac function of oysters. Collectively, activities of neuroendocrinologically acting agents in mammals showed unexpected and distinct activities from those in mammalian cardiovascular systems. These results obtained from substances of different physiological functions can serve as a basis for understanding neuroendocrine control of the heart function in Pacific oyster.

  • PDF

The Effects of Jungri-tang Gamibang on Carbachol-accelerated Mouse Small Intestinal Transit

  • Kim, Dae-Jun;Byun, Joon-Seok
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.9-16
    • /
    • 2009
  • Objectives: To clarify the effects of Jungri-tang Gamibang on accelerating small intestinal movement induced by the stimulation of cholinergic neurotransmission. Methods: 500, 250 and 125mg Jungri-Tang Gamibang or 20mg domperidone were dissolved or suspended in distilled water and orally pretreated on the carbachol-accelerated small intestinal transit mice once a day for 7 days at a volume of 10ml/kg (of body weight) using a Zonde needle attached to 1 ml syringes containing test drugs. Result: Significantly (p<0.01) increase of % regions of activated charcoal transit in the small intestine was detected in carbachol control compared to that of intact control. However, significant (p<0.01) decreases of % regions of activated charcoal transit were dose-dependently observed in all Jungri-Tang Gamibang extracts or domperidone-pretreated groups. Conclusions: it was concluded that Jungri-tang Gamibang enhancement in the normal intestinal motility and normalization in the accelerated intestinal motility might interfere with a variety of muscarinic, adrenergic and histaminic receptor activities or with the mobilization of calcium ions required for smooth muscle contraction non-specifically.

  • PDF

Ligand Binding Properties of Muscarinic Acetylcholine Receptors in Caenorhabditis elegans

  • You, Suck-Jong;Choi, Jung-Do;Cho, Nam-Jeong
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.525-529
    • /
    • 1996
  • Ligand binding properties of muscarinic acetylcholine receptors (mAChRs) in the nematode Caenorhabditis elegans (C. elegans) were characterized by using filtration binding assays. Scatchard analysis using $[^{3}H]N-methylscopolamine$ ($[^{3}H]NMS$) showed that the dissociation constant ($K_d$) and the maximum binding value ($B_{max}$) were $3.3{\pm}0.8{\times}10^{10}$ M and $9.0{\pm}1.1$ fmol/mg protein, respectively. Binding competition experiments indicated that the affinities of C. elegans mAChRs to atropine, scopolamine, and oxotremorine were similar to those of mammalian mAChRs. Pirenzepine binding experiments revealed that the binding pattern of mAChRs in C. elegans closely resembled that of mAChRs in rat brain, suggesting that the receptors consist primarily of Ml subtype. The affinity of mAChRs for oxotrernorine was significantly affected by guanylylimidodiphosphate (Gpp(NH)p), a non hydrolyzable GTP analog, suggesting that mAChRs in C. elegans might be coupled to G proteins. The data presented here indicate the possibility that C. elegans provides a living animal model to study the action mode of the muscarinic cholinergic system.

  • PDF