• Title/Summary/Keyword: Cholinergic mechanism

Search Result 104, Processing Time 0.027 seconds

The Mode of Action of Pentazocine on Catecholamine Secretion from the Perfused Rat Adrenal Medulla (흰쥐 관류부신에서 Pentazocine의 카테콜아민 분비작용의 기전)

  • Lim, Dong-Yoon;Kim, Bong-Han;Heo, Jae-Bong;Choi, Cheo-Hee;Kim, Jin-Ho;Jang, Young;Lee, Jae-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.299-311
    • /
    • 1994
  • The present study was attempted to investigate whether pentazocine, which is known to possess both opioid agonistic and antagonistic properties, produces catecholamines (CA) secretion from the isolated perfused rat adrenal gland, and to establish the mechanism of its action, and also to compare its action with that of some opioids. Pentazocine (30 to 300 ug) injected into an adrenal vein caused a dose-dependent secretory response of CA from the rat adrenal medulla. The pentazocine-evoked secretion of CA was remarkably diminished by the preloading with chlorisondamine $(10^{-6}\;M)$, naloxone $(1.22{\times}10^{-7}\;M)$, morphine $(1.7{\times}10^{-5}\;M)$, met-enkephalin $(9.68{\times}10^{-6}\;M)$, nicardipine $(10^{-6}\;M)$ and TMB-8 $(10^{-5}\;M)$ while was not influenced by the pretreatment of pirenzepine $(2{\times}10^{-6}\;M)$. The perfusion of $Ca^{++}$-free Krebs solution for 30 min into the gland also led to the marked reduction in CA secretion evoked by pentazocine. Furthermore, the CA release evoked by ACh and/or DMPP was greatly inhibited by the pretreatment with pentazocine $(1.75{\times}10^{-4}\;M)$ for 20 min. From these experimental results, it is thought that pentazocine causes markedly the increased secretion of CA from the isolated perfused rat adrenal medulla by a calcium-dependent exocytotic mechanism. The secretory effect of pentazocine appears to be mediated through activation of opioid receptors located on adrenal chromaffin cells, which may be also associated with stimulation of cholinergic nicotinic receptors.

  • PDF

Influence of Hypoxia on Catecholamine Secretion Evoked by DMPP, McN-A-343, Excess $K^+$ and ACh from The Perfused Rat Adrenal Gland (저산소증이 흰쥐 관류부신에서 DMPP, McN-A-343, Excess $K^+$ 및 Ach의 카테콜아민 분비작용에 미치는 영향)

  • Lim Dong-Yoon;Heo Jae-Bong;Park Yoo Han
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.63-74
    • /
    • 1995
  • It has been known that, during hypoxia, the adrenal medulla is activated to release catecholamines (CA) while hypoxia also inhibits high $K^+$ -induced CA secretion in the cultured bovine adrenal chromaffin cells. The present study was attempted to examine the effect of hypoxia on CA secretion evoked by chlinergic stimulation and membrane-depolarization from the isolated perfused rat adrenal glands and also to clarify its mechanism of action. For this purpose, using the isolated rat adrenal glands, the effects of hypoxia on CA release evoked by nicotinic ($N_1$) and muscarinic ($M_1$) receptor agonists, membrane-depolarizing agent, $Ca^{++}$-channel activator, intracellular $Ca^{++}$-releaser and ACh were determined. Experiments were carried out, perfusing Krebs solution pre-equilibrated with a gas mixture of 95% N_2$ and 5% $CO_2$. Hypoxia was maintained for $3{\sim}4$ hours through the experiments. Hypoxia gradually caused a time-dependent seduction in CA secretion evoked by DMPP ($100{\mu}M$), McN-A-343 ($100{\mu}M$), ACh (5.32 mM), Bay-K-8644 ($10{\mu}M$) and high $K^+$ (56 mM) respectively. How-ever, it did not affect CA secretion evoked by cyclopiazonic acid ($10{\mu}M$). Hypoxia itself also did fail to produce any influence on spontaneous secretory response of CA. These experimental results suggest that hypoxia depresses CA release evoked by both cholinergic stimulation and membrane-depolarization from the isolated rat adrenal medulla, and that this inhibitory activity may be due to the result of the direct inhibition of $Ca^{++}$ influx into the chromaffin cells without any effect on the calcium mobilization from the intracellular store.

  • PDF

Cumulative Risk Assessment of Organophosphorus Pesticides in the Diet (식품을 통한 유기인계농약류의 동시노출위해성평가)

  • 이효민;한지연;윤은경;김효미;황인균;최동미;이강봉;원경풍;송인상
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • Risk assessment traditionally are conducted on individual chemicals; however, humans are exposed to multiple chemicals in daily life. The organophosphorus (OP) pesticides are considered in a single risk assessment because they act by a common mechanism of toxicity, and there is likely to be expose to multiple OP pesticides simultaneously or sequentially. The OP pesticides act by inhibiting the enzyme acetylcholinesterasc (AChE) and have available extensive database. AChE is widely distributed throughout the body, most importantly in the nervous system. Inhibition of AChE results in accumulation of acetylcholine in the nervous system that results in clinical signs of cholinergic toxicity, including increased salivation and lacrimation, nausea and vomiting, muscle fasciculation, lethargy and fatigue, among others. To conduct an exposure assessment for pesticides in the diet, we need to know the food consumption patterns of the populations, and the pesticide residue levels in the foods that are consumed. This study was conducted to identify cumulative dietary risk due to multiple OP pesticides that can be exposed through various foods. Total 22 food samples including cereals, vegetables and fruits were collected randomly two times from food markets in several sites (4 cities). The subjected foods were selected by regarding of highly consumed foods to general Korean people. The 12 OP pesticides including Acephate, Azinphos-methyl, Chlorpyrifos, and Diazinon were monitored. For the exposure assessment, general adult group of 60 kg body weight was regarded as target population and food consumption data suggested by Lee et al. (2000) were used as consumed value of individual food. Analyses of samples for OP pesticides have been carried out according to the multiclass multiresidue analysis method and acephate and methamidophos analysis method of Korea Food Code. In general the levels of OP pesticides found in the food samples were very low or not detected.

  • PDF

Effects of Bombesin on Electrical and Mechanical Activities of Gastric Smooth Muscle Strips of Cats (적출한 고양이 위(胃) 평활근 절편의 전기적 및 기계적 활동에 미치는 Bombesin의 영향과 그 작용기전)

  • Park, Hyoung-Jin;Kwon, Hyeok-Yil;Suh, Sang-Won;Kim, Jeong-Mi;Lee, Tae-Hyung
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 1990
  • It has been reported that bombesin induces contraction of the smooth muscle of the gastrointestinal tract. Thus, the present investigation was undertaken to see an influence of bombesin on electrical activity of the gastric smooth muscle, since electrical activity is associated with contractile activity in the smooth muscle of the stomach. Smooth muscle strips $(5\;{\times}\;1.5\;cm)$ that included the corpus and antrum were prepared from the ventral and dorsal portion of the feline stomach along the greater curvature. Circular muscle strips $(1\;{\times}\;0.3\;cm)$ of the corpus were also obtained. Electrical activity of the corpus and antrum of the muscle strip was monophasically recorded by using Ag-AgCl capillary electrodes placed on the circular muscle layer. Contractile activity of the circular muscle strip was also recorded. The recordings were performed in Krebs-Ringer solution that was continuously aerated with $O_{2}$ containing 5% $Co_{2}$, and kept at $36^{\circ}C$. Dose-related responses of electrical activity and contractility to bombesin was studied after frequency of slow waves and contraction of each strip reached to a steady state. An action of $D-leu^{13}-{\psi}\;(CH_{2}NH)-D-leu^{14}-bombesin,\;D-pro^{2}-D-trp^{7,9}-substance\;P$, tetrodotoxin, hexamethonium, atropine, phentolamine or propranolol on the effect of bombesin was also observed. 1) Bombesin increased frequency of slow waves and contractions dose-dependently at concentrations from $10^{-9}\;M\;to\;3\;{\times}\;10^{-8}\;M$. 2) The bombesin analogue at a concentration of $3\;{\times}\;10^{-7}\;M$ antagonized the effect of bombesin on frequency of slow waves. 3) The effect of bombesin on frequency of slow waves was inhibited by tetrodotoxin $(10^{-6}\;M)$ and hexamethonium $(10^{-3}\;M)$ but unaffected by atropine $(10^{-6}\;M)$, phentolamine $(10^{-5}\;M)$ and propranolol $(10^{-5}\;M)$. 4) The effect of bombesin on frequency of slow waves was blocked by the substance P analogue at a concentration of $10^{-5}\;M$. 5) Substance P at a concentration of $10^{-5}\;M$ failed to change frequency of slow waves. It is concluded from the above results that bombesin increases the frequency of slow waves as well as contractions of the smooth muscle strip from the feline stomach, and the effect of bombesin might be mediated by non-cholinergic or non-adrenergic mechanism at neuromuscular junction. However, enteric nerves that have substance P as a neurotransmitter do not appear to participate in the action of bombesin on frequency of slow waves.

  • PDF