• Title/Summary/Keyword: Choline oxidase

Search Result 13, Processing Time 0.021 seconds

Effects of CDP-Choline, Aminoguanidine and Difluoromethylornithine on the ECS-induced Impairment of Active Conditioned Response Retention (백서의 조건회피반응-유지에 대한 경련성 전기충격의 저해작용에 미치는 CDP-Choline, Aminoguanidine, 및 Difluoromethylornithine의 영향에 관한 연구 : 뇌내 Acetylcholine과 Polyamine 함량-변동에 연관하여)

  • Kim, Hyung-Gun;Kim, Chang-Hyun;Choi, Sang-Hyun;Ihm, Suk-Young;Lee, Min-Soo;Chun, Boe-Gwun
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.115-128
    • /
    • 1992
  • The training of male wistar rats for active conditioned response (ACR) was performed by one daily training session of 30 consecutive trials for 10 successive days using a two-way shuttle box, and the rats that showed 10 or more ACRs on the last day were treated for further 10 days with electroconvulsive shock (ECS : 50 mA, 0.5 msec; 100 Hz; 1.5 sec) and the following compounds. On the 20th day, all the rats were tested for the ACR rention. The ECS regimens were one ECS per day for 10 days with one day interval $(5{\times}ECS)$, one ECS at 3 hrs (ECS-3h), and one ECS at 24 hrs (ECS-24h), respectively, before the ACR retention test. And CDP-choline (cc: 250 mg/kg), spermine (SM: 10 mg/kg), ${\alpha}-difluoromethylornithine$ (DO: 250 mg/kg), or aminoguanidine (AG: 100 mg/kg) was administered by one daily i.p. injection for 10 days. The ACR number $(13.7{\pm}1.0)$ obtained on the last training day was increased by 37.23% on the 20th day in the control rats. And the ACR increase was significantly suppressed by 5-ECS, ECS-3h, CC, or SM but was little affected by ECS-24h, DO, or AG. However, the 5-ECS induced impairment of ACR retention was significantly suppressed by AG, SM, and CC in the order of potency but was little affected by DFMO. And the ECS-3h induced impairment was moderately worsened by SM or AG. The acetylcholine (ACh) of the rat hypothalamus (HT), hippocampus (HC), and entorhinal cortex (EC) was markedly increased by CC and moderately increased by SM, but little affected by ECS-3h, ECS-24h, DO, or AG. But $5{\times}ECS$ slightly increased the ACh content. The brain putrescine (Pt) content was significantly increased by AG and little affected by CC, SM, or DO. But the $5{\times}ECS$ markedy decreased the brain Pt content, and the decrease was significantly suppressed by CC, SM, or AG. CC induced the marked increases of the spermidine (Sd) and spermine (Sm) contents of all the areas. SM increased the Sd contents of all the areas and the EC-Sm content. DO decreased the brain Sd and Sm contents. And AG increased the HT-Sd content and the Sm contents of all the brain areas. The $5{\times}ECS$ induced decrease of the HC-Sm content was suppressed by CC, SM and AG. These results suggest that the improving effect of aminoguanidine on the $5{\times}ECS$ induced impairment of ACR retention may be ascribed in part to its activity as a diamine oxidase inhibitor.

  • PDF

Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus

  • Zheng, Zhuang-Li;Qiu, Xue-Hong;Han, Ri-Chou
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.37-42
    • /
    • 2015
  • A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris.

S-Thiolation and Oxidation of Glycogen Phosphorylase b and Peroxidation of Liposome Initiated by Free Radical Species

  • Lee, Kyu-Sun;Lee, Hyung-Min;Park, Young-Mee;Chang, Byeong-Doo;Chung, Tae-Young;Choi, Eun-Mi
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • The relationship of S-thiolation and oxidation of glycogen phosphorylase b and peroxidation of phosphatidyl choline liposome by xanthine oxidase (XOD), 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH), and 2,2'-azobis(dimethylvaleronitrile) (AMVN)-generated free radicals was investigated, Glycogen phosphorylase b was S-thiolated in the presence of glutathione and oxidized in the absence of it by XOD, AAPH and AMVN. In XOD-initiated reaction, the rates of S-thiolation and oxidation of phosphorylase were very similar and addition of liposome to the reaction mixture showed little inhibition of the modifications. In AAPH-initiated reaction, the rate of oxidation was higher than that of S-thiolation and addition of liposome increased oxidation of the protein but had no effect on S-thiolation. In AMVN-initiated reaction, S-thiolation was higher than oxidation and addition of liposome increased S-thiolation remarkably but showed no effect on oxidation. The effect of liposome on modifications of protein in AAPH and AMVN reaction seemed to be caused by certain reactive degradation products or intermediates of liposome by free radical attack. Peroxidation of liposome was not observed in XOD-initiated reaction. Liposome was gradually peroxidized by AAPH reaction. The peroxidation was inhibited by addition of GSH and phosphorylase. Peroxidation of liposome by AMVN was extreamly fast, and was not affected by GSH and phosphorylase.

  • PDF