In order to analyze travel mode choice behavior, behavioral models including logit model, based on revealed preference theory, have been using easily measurable variables such as individual socioeconomic characteristics and physical attributes of travel modes. But some recent attitudinal models of travel choice behavior have implied that the negligence of individual psychological variables and individual choice constraints in travel mode choice might preclude better prediction of individual travel mode choice behavior. In this context, this study was attempted to reconstruct an attitudinal model(AM), especially focused on the decision rules in travel mode choice decision making process, consistent with the conceptual framework relating individual attitude and choice constraints to choice behavior. And to evaluate the strengths of the AM to other comparative models(logit, linear-additive, conjunctive, lexicographic model) in predicting travel mode choice bebavior, an empirical study of the mode choice in work-trip to CBD in Seoul was performed. According to the results the percent of correct prediction(PCP) derived from the AM was higher than those derived from comparative models by at least 7 to 20% in predicting travel mode choice. But each model produced a different prediction accuracy depending on market segmentation by travel modal users, individual socioeconomic characteristics, transportation system characteristics, and satisfaction levels. The finding that different groups divided by a certain criterion employ different decision rules supports the necessity of developing a choice model such as the AM combining compensatory and noncompensatory decision rules, and suggests that a proposed transportation system management plan or policy may have different effects on each group.
The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate Its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss Its methodological characteristics in comparison with other existing classification methods. Also, we conduct a series of experiments employing survey data of consumer choices of MP3 players to assess the prediction power of the model. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.
The purpose of this paper is to develop a new classification method for predicting consumer choice based on genetic algorithm, and to validate its prediction power over existing methods. To serve this purpose, we propose a hybrid model, and discuss its methodological characteristics in comparison with other existing classification methods. Also, to assess the prediction power of the model, we conduct a series of experiments employing survey data of consumer choices of MP3 players. The results show that the suggested model in this paper is statistically superior to the existing methods such as logistic regression model, artificial neural network model and decision tree model in terms of prediction accuracy. The model is also shown to have an advantage of providing several strategic information of practical use for consumer choice.
The Journal of Asian Finance, Economics and Business
/
제7권2호
/
pp.221-228
/
2020
This study suggests an alternative to the conventional collaborative filtering method for predicting consumer choice, using case-based reasoning. The algorithm of case-based reasoning determines the similarity between the alternative sets that each subject chooses. Case-based reasoning uses the inverse of the normalized Euclidian distance as a similarity measurement. This normalized distance is calculated by the ratio of difference between each attribute level relative to the maximum range between the lowest and highest level. The alternative case-based reasoning based on similarity predicts a target subject's choice by applying the utility values of the subjects most similar to the target subject to calculate the utility of the profiles that the target subject chooses. This approach assumes that subjects who deliberate in a similar alternative set may have similar preferences for each attribute level in decision making. The result shows the similarity between comparable alternatives the consumers consider buying is a significant factor to predict the consumer choice. Also the interaction effect has a positive influence on the predictive accuracy. This implies the consumers who looked into the same alternatives can probably pick up the same product at the end. The suggested alternative requires fewer predictors than conjoint analysis for predicting customer choices.
본 연구에서는 분산 컴퓨팅 및 개별 디바이스 활용을 통해 개인 정보 보호에 특화된 학습방법인 연합학습 방법론을 기반으로, 모바일 내비게이션 애플리케이션에서 수집된 대규모의 운전자 데이터를 이용하여 경로 선택 예측 모델을 수립하는 방법에 대해 고찰한다. 경로 선택 모델링에서 활용될 수 있는 운전자 데이터의 전처리 및 분석 방법을 수립하고, 서포트벡터머신(SVM) 및 다층 퍼셉트론(MLP)과 같이 기존에 널리 활용되는 학습 방법과 연합학습 방법의 성능과 특성을 비교한다. 분석 결과 연합학습을 통한 모델 성능은 중앙 서버 기반의 모델과의 비교에서 예측 정확도 측면의 차이가 거의 없는 것으로 나타났으나, 개별 데이터가 충분히 확보되는 경우 연합학습 모델과 같은 개인화 모델의 성능이 개선될 수 있다는 점을 확인하였다. 연합학습 모델은 본 연구의 경로 선택 모델링 사례와 같이 모빌리티 부문의 데이터 프라이버시 문제가 중요한 분야에서 대규모 데이터 처리를 필요로 하는 경우에 그 활용 가치가 매우 높을 것으로 기대된다.
The purposes of this study were (1) to analyze the absolute and relative importance of tourists' choice attributes of restaurants and (2) to compare tourists' choice patterns with the prediction of restaurant operators in the tourism provinces of Gangwon-do, Empirical data for this study were collected from the 77 tourists and 66 restaurants operators. The attributes and attribute levels for the hypothetical profiles were decided from a focus group interview and 15 profiles were selected from fractional factorial designs. The SPSS/WIN 12,0 conjoint procedure was used to calculate the utility scores and simulate the profiles, According to the analysis on the relative importance of tourists' choice attributes of restaurants, food taste was the most important attribute(36.9%), followed by facility cleanliness(28.5%), dishes cleanliness(24.5%), price(19.3%) and service(18.3%). The tourists' ratings of the importance of the individual attributes differed from the ranking of the relative importance of the same attributes as derived from the conjoint analysis. The operators rated dishes cleanliness(27.6%) as also important, followed by food taste(27.7%), in choosing a restaurant Tourists' preference and operators' prediction of hypothetical profiles showed significant difference in L(p < .05), O(p < .01), M(p < .05), and H(p < .01) restaurants. Operators who want to differentiate themselves from their competitors should make decisions based on an increased understanding of tourists' restaurant choice decision process and measure the latent needs of tourists in the tourism provinces.
This study was carried out to identify users' choice behavior of theme parks. overland. Lotte World, Seoul Land, Dreamland and Children's Grand Park were selected as study areas. Both multinomial logic model(MNL), nested logic model(NMNL) and joint logit model wet$.$e test using a choice-based sample collected on study areas. Hausman-McFadden test showed that the MNL is not appropriate because the IIA assumption is violated. To avoid the problematic IIA assumption, the NMNL was tested. It splits similar alternatives into groups and nests separate decisions into hierarchical order to avoid the IIA assumption. Cluster analysis and discriminant analysis were conducted to find applicable nest structures. The inclusive value coefficient was 0.7788. It meant that sufficient condition of this model is met and users' choice behavior can be better understood by NMNL than MNL. The $\rho$2 value and accuracy of prediction of this model were 0.402 and 46.33% , respectively. Several comments were suggested to make the NMNL to be more reliable for future research on users' choice behavior of theme park.
Communications for Statistical Applications and Methods
/
제17권6호
/
pp.811-827
/
2010
본 논문에서는 통계적 역문제로서 이항 선택모형에서의 밀도추정 방법에 대하여 연구하였다. 밀도함수의 추정을 위하여 직교열 기저를 이용하였으며, 모형의 복잡성과 예측의 정확성을 반영한 적절한 절단모수의 선택에 대하여 고려하였다. 이항 선택 모형에서 데이터에 의존하는 절단모수를 선택하는 방법에 대해 제안하고 모의실험, 실자료를 통해 제안한 방법의 성능을 규명하였다.
The importance of constraints has been one of major issues in recreation for prediction of choice behavior; however, traditional conjoint choice model did not consider the effects of these variables or fail to integrate them into choice model adequately. The purposes of this research are (a) to estimate the effects of constraints in theme park choice behavior by the constraints-induced conjoint choice model, and (b) to test additional explanatory power of the additional constraints in this suggested model against the more parsimonious traditional model. A leading polling agency was employed to select respondents. Both alternative generating and choice set generating fractional factorial design were conducted to meet the necessary and sufficient conditions for calibration of the constraints-induced conjoint choice model. Th alternative-specific model was calibrated. The log-likelihood ratio test revealed that suggested model was accepted in the favor of the traditional model, and the goodness-of-fit($\rho$$^2$) of suggested and traditional model was 0.48427 and 0.47950, respectively. There was no difference between traditional and suggested model in estimates of attribute levels of car and shuttle bus because alternatives were created to estimate the effects of constraints independently from mode related variables. Most parameters values of constraints had the expected sign and magnitude: the results reflected the characteristics of the theme parks, such as abundance of natural attractions and poor accessibility in Everland, location of major fun rides indoor in Lotte World, city park like characteristics of Dream Land, and traffic jams in Seoul. Instead of the multinomial logit model, the nested logit model is recommended for future researches because this model more reasonably reflects the real decision-making process in park choice. Development of new methodology too integrate this hierarchical decision-making into choice model is anticipated.
The distribution of economic activity over a mutually exclusive and exhaustive categorical industry-region matrix is modeled as a composition of two random components: the probability-like share distribution of jobs and the dynamic evolution of absolute aggregates. The former describes the individual activity location choice by comparing the predicted profitability of the current industry-region pair against that of all other alternatives based on the available information on industry-specific, region specific, or activity specific attributes. The latter describes the time evolution of macro-level aggregates using a dynamic reduced from model. With the seperation of micro choice behavior and macro dynamic aggregate constraint, the usual independence and identicality assumptions become consistent with the activity share distribution, hence multi-regional industrial migration can be represented by a set of probability evolution equations in a conservative Markovian from. We call this a Micro-Macro Composition Approach since the product of the aggregate prediction and the predicted activity share distribution gives the predicted activity distribution gives the predicted activity distribution which explicitly considers the underlying individual choice behavior. The model can be applied to interesting practical problems such as the plant location choice of multinational enterprise, the government industrial ploicy to attract international firms, and the optimal tax-transfer mix to influence activity location choice. We consider the latter as an example.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.