• Title/Summary/Keyword: Chlroride Ion

Search Result 3, Processing Time 0.019 seconds

The Analysis of Chloride Ion of Ground Water in the West Coast District of Jeollabuk-Do using Spatial Interpolation (공간보간법을 이용한 전라북도 서해안 지역의 지하수 염소이온 분석)

  • Lee, Geun-Sang;Im, Dong-Gil;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.23-33
    • /
    • 2011
  • In this study, the data that examined the chloride ion concentration of ground water wells in the west coast of Jeollabukdo applying the GIS spatial estimation method were analyzed. In particular, through the designation of a validation point among ground water wells and then the analysis of error characteristics of the chloride ion concentration by each method of IDW (Inverse Distance Weight), Spline, and Kriging Interpolation method which is proper for estimating salt water intrusion was selected. The main conclusion from this study is as follows. First, as a result of analyzing the error characteristics of various spatial estimation methods by using the data from the chloride ion concentration of 485 ground water wells, the IDW method was found to be the most appropriate for estimating chloride ion concentration by salt water intrusion. Second, analyzing the average chloride ion concentration of the targeted regions has revealed that Gunsan-si with the record of $541mg/{\ell}$ did not meet water quality standards even for industrial use. Both Gimje-si and Gochang-gun satisfied drinking water quality standards and Buan-gun with $272mg/{\ell}$ was slightly below the standards for drinking water. Third, concerning the results of analysis according to administrative districts, as the areas adjacent to the west coast such as Daemyeong-dong, Joong-dong, Jangjae-dong and Guemam-dong in Gunsan-si are found to have very high chloride ion concentration, and both Hoehyeon-myeon and Daeya-myeon bounded by the Mankeong river did not meet water quality standards even for industrial use. From these facts, it is concluded that salt water intrusion has a great effect on Gunsan-si generally.

Effect of Fe(ClO4)3 Addition in the Aqueous Ferric Chloride Etchant on the Increase of Shadow Mask Etch Rate (Fe(ClO4)3 첨가제의 주입에 의한 염화제이철 수용액의 Shadow Mask 에칭속도 향상 효과)

  • Kim, Young Wook;Park, Mooryong;Lee, Hyung Min;Park, Gwang Ho;Park, Chinho
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.157-163
    • /
    • 2010
  • A new etchant formulation was developed in this study to increase the shadow mask production rate, utilizing the $Fe(ClO_4)_3$ as an additive in the aqueous $FeCl_3$ solution. The shadow mask etch rate increased substantially with the increase of $Fe(ClO_4)_3$ concentration in the etchant. The etch rate difference between Ni and Invar steel was also reduced with the addition of $Fe{(ClO_4)_3}$ for most of the operating conditions, which was caused by the enhanced etch rate of both Ni and Fe by the new etchant. The increase in etch rate with the addition of $Fe(ClO_4)_3$ to aqueous ferric chloride solution was attributed to the superior electron transfer capability of $ClO^{4-}$ ion to that of $Cl^-$ ion.

Wet Etching of Stainless Steel Foil by Aqueous Ferric Chloride Solution (염화제이철 수용액에 의한 스테인레스 강판의 식각에 관한 연구)

  • Lee, Hyung Min;Park, Mooryong;Park, Gwang Ho;Park, Chinho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • Wet chemical etching of stainless steel foil by aqueous ferric chloride solution was investigated in this study. Effects of various process parameters (e.g. etchant agitation rate, etchant temperature, $Fe^{3+}$ ion concentration, free HCl concentration, specific gravity, etc.) on the etch rate was first studied, and it was found that the etch rate of AK (aluminum-killed) steel, chromium metal and stainless steel (STS430J1L alloy) follows the pseudo-first order reaction equation. When the fatigue ratio of etchant was kept under 16%, sludge was not formed in the solution, and the etched surface showed smooth roughness. The etch rate decreases as Baume of etchant increases, but the effect of free HCl concentration on the etch rate turned out to be minimal. Experimental data were compared with the calculated results from modeled equation, showing very good agreement.