• Title/Summary/Keyword: Chloroquine

Search Result 75, Processing Time 0.027 seconds

Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum

  • Ha, Young Ran;Hwang, Bae-Geun;Hong, Yeonchul;Yang, Hye-Won;Lee, Sang Joon
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.421-430
    • /
    • 2015
  • The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (${\Delta}{\Psi}m$) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.

Korean Red Ginseng extract and ginsenoside Rg3 have anti-pruritic effects on chloroquine-induced itch by inhibition of MrgprA3/TRPA1-mediated pathway

  • Lee, Wook-Joo;Kim, Young-Sik;Shim, Won-Sik
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.470-475
    • /
    • 2018
  • Background: It was previously found that Korean Red Ginseng water extract (KRGE) inhibits the histamine-induced itch signaling pathway in peripheral sensory neurons. Thus, in the present study, we investigated whether KRGE inhibited another distinctive itch pathway induced by chloroquine (CQ); a representative histamine-independent pathway mediated by MrgprA3 and TRPA1. Methods: Intracellular calcium changes were measured by the calcium imaging technique in the HEK293T cells transfected with both MrgprA3 and TRPA1 ("MrgprA3/TRPA1"), and in primary culture of mouse dorsal root ganglia (DRGs). Mouse scratching behavior tests were performed to verify proposed antipruritic effects of KRGE and ginsenoside Rg3. Results: CQ-induced $Ca^{2+}$ influx was strongly inhibited by KRGE ($10{\mu}g/mL$) in MrgprA3/TRPA1, and notably ginsenoside Rg3 dose-dependently suppressed CQ-induced $Ca^{2+}$ influx in MrgprA3/TRPA1. Moreover, both KRGE ($10{\mu}g/mL$) and Rg3 ($100{\mu}M$) suppressed CQ-induced $Ca^{2+}$ influx in primary culture of mouse DRGs, indicating that the inhibitory effect of KRGE was functional in peripheral sensory neurons. In vivo tests revealed that not only KRGE (100 mg) suppressed CQ-induced scratching in mice [bouts of scratching: $274.0{\pm}51.47$ (control) vs. $104.7{\pm}17.39$ (KRGE)], but also Rg3 (1.5 mg) oral administration significantly reduced CQ-induced scratching as well [bouts of scratching: $216.8{\pm}33.73$ (control) vs.$115.7{\pm}20.94$ (Rg3)]. Conclusion: The present study verified that KRGE and Rg3 have a strong antipruritic effect against CQ-induced itch. Thus, KRGE is as a promising antipruritic agent that blocks both histamine-dependent and -independent itch at peripheral sensory neuronal levels.

The transfer of diacylglycerol from lipophor in to fat body in larval Manduca sexta (유충 Manduca sexta 리포포린에 의한 지방체로의 디아실글리세리드 운반)

  • Yun, Hwa-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1770-1774
    • /
    • 2011
  • This paper was to characterize the transfer of diacylglycerol(DAG) from lipophorin to Manduca sexta larval fat bodies. $[^3H]$-DAG-labeled Lp($[^3H]$-DAG-Lp) was incubated with the larval fat bodies under different times and the time of DAG transfer was determined. Incubation of fat bodies with $[^3H]$-DAG-Lp resulted in accumulation of DAG and TAG in the tissue. The transfer of $[^3H]$-DAG was inhibited in the presence of suramin and unlabeled lipophorin, which would be consistent with a lipophorin receptor. The effects of suramin may be complex because it can change membrane properties when bound to the lipophorin receptor and affect the rate of DAG transfer. To investigate the lipid uptake via receptor-mediated endocytosis, we treated with endocytosis inhibitors, ammonium chloride and chloroquine. The results show that the transfer process of lipid by lipophorin and fat bodies is receptor-mediated endocytosis.

Modulation of Autophagy is a Potential Strategy for Enhancing the Anti-Tumor Effect of Mebendazole in Glioblastoma Cells

  • Jo, Seong Bin;Sung, So Jung;Choi, Hong Seok;Park, Jae-Sung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.616-624
    • /
    • 2022
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has been suggested as a repositioning candidate for the treatment of brain tumors. However, the efficacy of MBZ needs further study to improve the beneficial effect on the survival of those patients. In this study, we explored a novel strategy to improve MBZ efficacy using a drug combination. When glioblastoma cells were treated with MBZ, cell proliferation was dose-dependently inhibited with an IC50 of less than 1 µM. MBZ treatment also inhibited glioblastoma cell migration with an IC50 of less than 3 µM in the Boyden chamber migration assay. MBZ induced G2-M cell cycle arrest in U87 and U373 cells within 24 h. Then, at 72 h of treatment, it mainly caused cell death in U87 cells with an increased sub-G1 fraction, whereas polyploidy was seen in U373 cells. However, MBZ treatment did not affect ERK1/2 activation stimulated by growth factors. The marked induction of autophagy by MBZ was observed, without any increased expression of autophagy-related genes ATG5/7 and Beclin 1. Co-treatment with MBZ and the autophagy inhibitor chloroquine (CQ) markedly enhanced the anti-proliferative effects of MBZ in the cells. Triple combination treatment with temozolomide (TMZ) (another autophagy inducer) further enhanced the anti-proliferative effect of MBZ and CQ. The combination of MBZ and CQ also showed an enhanced effect in TMZ-resistant glioblastoma cells. Therefore, we suggest that the modulation of protective autophagy could be an efficient strategy for enhancing the anti-tumor efficacy of MBZ in glioblastoma cells.

Primaquine Administration after Falciparum Malaria Treatment in Malaria Hypoendemic Areas with High Incidence of Falciparum and Vivax Mixed Infection: Pros and Cons

  • Wilairatana, Polrat;Tangpukdee, Noppadon;Kano, Shigeyuki;Krudsood, Srivicha
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.2
    • /
    • pp.175-177
    • /
    • 2010
  • Mixed infections of Plasmodium falciparum and Plasmodium vivax is high (~ 30%) in some malaria hypoendemic areas where the patients present with P. falciparum malaria diagnosed by microscopy. Conventional treatment of P. falciparum with concurrent chloroquine and 14 days of primaquine for all falciparum malaria patients may be useful in areas where mixed falciparum and vivax infections are high and common and also with mild or moderate G6PD deficiency in the population even with or without subpatent vivax mixed infection. It will be possibly cost-effective to reduce subsequent vivax illness if the patients have mixed vivax infection. Further study to prove this hypothesis may be warranted.

Antimalarial Activity of C-10 Substituted Triazolyl Artemisinin

  • Park, Gab-Man;Park, Hyun;Oh, Sangtae;Lee, Seokjoon
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.661-665
    • /
    • 2017
  • We synthesized C-10 substituted triazolyl artemisinins by the Huisgen cycloaddition reaction between dihydroartemisinins (2) and variously substituted 1, 2, 3-triazoles (8a-8h). The antimalarial activities of 32 novel artemisinin derivatives were screened against a chloroquine-resistant parasite. Among them, triazolyl artemisinins with electron-withdrawing groups showed stronger antimalarial activities than those shown by the derivatives having electron-donating groups. In particularly, m-chlorotriazolyl artemisinin (9d-12d) showed antimalarial activity equivalent to that of artemisinin and could be a strong drug candidate.

A case of symptomatic splenic infarction in vivax malaria

  • Kim, A-Reum;Park, Yun-Kyu;Lee, Jin-Soo;Chung, Moon-Hyun;Kim, Eun-Sil
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.1 s.141
    • /
    • pp.55-58
    • /
    • 2007
  • Splenic infarction is a rare complication in malaria cases, and is caused primarily by Plasmodium falciparum. Recently in South Korea, only P. vivax has prevailed since 1993. Although the probability that symptomatic splenic infarction may occur in vivax malaria cases is considered relatively high, there have never been any case reports describing the occurrence of symptomatic splenic infarction in cases of vivax malaria. A 34-year-old man presented with fever that had persisted for 5 days. P. vivax infection was verified using a peripheral blood smear, and chloroquine was utilized to treat the fever successfully. Six days later, the patient developed pain in the left upper abdomen, which was diagnosed as splenic infarction by computed tomography.

Chloroquine and Valproic Acid Combined Treatment in Vitro has Enhanced Cytotoxicity in an Osteosarcoma Cell Line

  • Wang, Chuan-Kun;Yu, Xi-Dong;Li, Qiang;Xie, Gang;Teng, Yue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4651-4654
    • /
    • 2013
  • Choroquine (CQ) and valproic acid (VPA) have been extensively studied for biological effects. Here, we focused on efficacy of combined CQ and VPA on osteosarcoma cell lines. Viability of osteosarcoma cell lines (U20S and HOS) was analyzed by MTT assay. Apoptotic assays and colony formation assays were also applied. ROS generation and Western Blotting were performed to determine the mechanism of CQ and VPA combination in the process of apoptosis. The viability of different osteosarcoma cell lines significantly decreased after CQ and VPA combination treatment compared with either drug used alone, and apoptosis was increased significantly. ROS generation was triggered leading to expression of apoptosis related genes being increased and of antiapoptotic related genes being decreased. From our data shown here, CQ and VPA combination treatment in vitro enhanced cytotoxicy to osteosarcoma cells.

The peripheral and central mechanisms underlying itch

  • Lee, Jae Seung;Han, Jasmin Sanghyun;Lee, Kyeongho;Bang, Juwon;Lee, Hyosang
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.474-487
    • /
    • 2016
  • Itch is one of the most distressing sensations that substantially impair quality of life. It is a cardinal symptom of many skin diseases and is also caused by a variety of systemic disorders. Unfortunately, currently available itch medications are ineffective in many chronic itch conditions, and they often cause undesirable side effects. To develop novel therapeutic strategies, it is essential to identify primary afferent neurons that selectively respond to itch mediators as well as the central nervous system components that process the sensation of itch and initiate behavioral responses. This review summarizes recent progress in the study of itch, focusing on itch-selective receptors, signaling molecules, neuronal pathways from the primary sensory neurons to the brain, and potential decoding mechanisms based on which itch is distinguished from pain.

Highly Efficient Gene Delivery into Transfection-Refractory Neuronal and Astroglial Cells Using a Retrovirus-Based Vector

  • Kim, Byung Oh;Pyo, Suhkneung
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Introduction of foreign genes into brain cells, such as neurons and astrocytes, is a powerful approach to study the gene function and regulation in the neuroscience field. Calcium phosphate precipitates have been shown to cause cytotoxicity in some mammalian cells and brain cells, thus leading to low transfection efficiency. Here, we describe a retrovirus-mediated gene delivery method to transduce foreign genes into brain cells. In an attempt to achieve higher gene delivery efficiency in these cells, we made several changes to the original method, including (1) use of a new packaging cell line, Phoenix ampho cells, (2) transfection of pMX retroviral DNA, (3) inclusion of 25 mM chloroquine in the transduction, and (4) 3- 5 h incubation of retroviruses with target cells. The results showed that the modified protocol resulted in a range of 40- 60% gene delivery efficiency in neurons and astrocytes. Furthermore, these results suggest the potential of the retrovirus-mediated gene delivery protocol being modified and adapted for other transfection-refractory cell lines and primary cells.